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Part I

Rounding errors and numerical stability
Very often the study of numerical analysis starts with the topic of rounding errors. These class

notes is not an exception.1 Suggested reading: [TrBa97, Lecs. 12–15] and [Hig02, Chs. 1, 2].

1 Floating-point arithmetic
One can come up with 3 ways to represent information: I) analogue, II) digital, and III) algorith-

mical. Examples of information in analogue form would be: a length of a wooden stick, printed photo,
audio tape recording,2 a mass of an object. Examples of information in digital form are: post address,
a text in a book, computer file, etc. Algorithmic way of presenting /storing information instead of
giving information per se, just operates with a recipe how to produce the information. Information in
digital form is easier to handle.3 In computer the information is presented in bits that could be in 2
states: 0 and 1 (or low and high voltage). Having just 2 states makes circuit design easier.4

Let us say we want to devote N bits to store a [real] number. We have 2N possible states, and
thus no more than 2N different numbers to play with. How would we spend these N bits? A possible
[linear] way is to have numbers 〈1− 2N−1,2− 2N−1, ...,−1,0,1,2, ...,2N−1− 1,2N−1〉/2E , where E
is not far from N/2. This way we have both large (about 2N−E) and small (about 2−E) numbers. It is
easy to proceed with addition in this system. Long multiplication (more elaborate than addition) can
be used. The problem is that largest and smallest non-zero numbers in this system are not that very
large or small.5

Logarithmic quantization, with numbers ±(1 + ε)E , where ε� 1 and E . 2N . This way we
could get very large and very small numbers easily, even with small relative change between the

1 Here is an essay that advocates the point of view that numerical analysis is far from being just the study of rounding
errors: L. N. Threfethen, The definition of numerical analysis, 1992.

2 Later there were devices which wrote and read audio or video information on a magnetic tape in digital form.
3 Copying without distortion is possible. Error correction is much more effective.
4 For any base or radix B one can introduce a so called “radix economy” E(B) ..= B/ lnB. It is roughly the number

of B-digits needed to represent a [large] number N multiplied by B (number of different B-digits) and divided by lnN.
Ternary system is more radix economic, E(3)< E(2), and there were some ternary computers built.

5 In many image formats (JPEG, PNG, etc.) a typical color depth is N = 8 bits. Often in digital photos some areas
are solid white due to clipping, while some others are too dark. In Compact Disc (CD) N = 16 is used. This seems to be
unsatisfactory for some, which gave rise to DVD-Audio (up to N = 24) and Super Audio CD (SACD).
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consequtive numbers. It is very easy to multiply numberes in it (but addition becomes even harder
than long multiplication in linear quantization).

A hybrid approach, combining the two, is to spend some bits (fraction or mantissa) in linear way,
while some others (exponent) in logarithmic. One bit is reserved to store the sign (positive or negative)
of the number. This is so called floating point numerical system. Eventually it was standardized as
IEEE 754 [IEEE85]. Fraction part allows easy addition and [long] multiplication, while dynamic
range is huge due to the exponent part.

Consider the following hypothetical floating-point numerical system FPFPFPN : the number in it is
either 0, or a floating-point number with the fraction made of N bits:6

±2E ·
(
1.b1b2...bN

)
2 =±2E

(
1+

N

∑
n=1

bn2−n
)

The exponent E could be any integer number, so FPFPFPN has arbitrarily small or large numbers (one can
think of 0 having exponent E =−∞). Not considering possibility of overflows/underflows, IEEE 754
single and double precision formats correspond to FPFPFP23 and FPFPFP52.

There is an obvious mapping inj : FPFPFPN →RRR. Let us construct the “best numerical representation”
mapping num : RRR→FPFPFPN by choosing num(x) to be the closest to x number from FPFPFPN (in cases where
two numbers from FPFPFPN are at the same minimal possible distance, [to imitate “round half to even”
rule] the number with larger E or (if the exponents are the same) with bN = 0 is chosen). Obviously,
num

(
inj(x)

)
= x for any x ∈FPFPFPN . The reverse is only approximately true:

Theorem 1: For any x ∈RRR we have inj
(
num(x)

)
= x(1+ ε), where |ε| ≤ εmachine

..= 2−(N+1). In
other words, it is possible to represent real numbers in floating-point numerical system FPFPFPN with
small (machine epsilon or unit roundoff εmachine) relative error.

Proof : We have num(2x) = 2num(x), so without loss of generality we can assume that 1≤ x < 2.
Within this interval FPFPFPN contains numbers 1 + k 2−N , where 0 ≤ k < 2N and k is integer. Then
|num(x)− x| ≤ 2−(N+1), and ε = (num(x)− x)/x.7

IEEE double precision arithmetic corresponds to N = 52, and εmachine = 2−53 ≈ 1.11 ·10−16, i.e.,
it deals with numbers having approximately 16 decimal digits.8

Analysis of numerical algorithms is impossible without concrete knowledge of how basic arith-
metic operations [or built-in functions like exp(·) or sin(·)] are implemented. In hypothetical imple-
mentation, that we will call virtual, the numerical arithmetic operations of addition, multiplication,
and division are defined as

x⊕ y ..= num
(
inj(x)+ inj(y)

)
, x� y ..= num

(
inj(x) · inj(y)

)
, x� y ..= num

(
inj(x)/inj(y)

)
The operation of subtration 	 is defined similarly or, e.g., as x	 y ..= x⊕ (−y), where (−y) is number
y with the sign bit being flipped. For built-in functions we would assume f (x) = num

(
f (inj(x))

)
.

This way defined arithmetic operations satisfy the following fundamental property:

for all x,y ∈FPFPFPN we have x~ y =
(
inj(x)∗ inj(y)

)
(1+ ε), where |ε| ≤ εmachine (1)

6 One can come up with a floating-point numerical system with any base or radix. An early computer ENIAC was
operating with [up to 20 digits] decimal numbers.

7 For brevity, the mapping “inj” was skipped in several places.
8 MATLAB R© defines “eps” as 2εmachine ≈ 2.22 ·10−16.

2



[...]/teaching/2019-4/math_575a/notes/C$ cat print_bits.c
#include <stdio.h>
void print_bits(double x, char* s) { int i; unsigned char c;

for (i = 0; i < 8; i++) for (c = 128; c != 0; c >>= 1)
if (*((char *)(&x) + 7 - i) & c) printf("1"); else printf("0");

printf(" %s\n", s); }
int main() { int i; double x, x52;

print_bits(0., " 0");
print_bits(1., " 1");
print_bits(-1., "-1");
print_bits(0.5, "1/2");
print_bits(0.25, "1/4");
print_bits(1. / 3., "1/3");
print_bits(2., " 2");
print_bits(4., " 4");
print_bits(1.5, " 1 + 1/2");
print_bits(1. + 1. / 1024., " 1 + 2ˆ(-10)");
x52 = 1.; for (i = 0; i < 52; i++) x52 /= 2.;
print_bits(1. + x52, " 1 + 2ˆ(-52)");
print_bits(1. - x52, " 1 - 2ˆ(-52)");
print_bits(1. + (2. * x52), " 1 + 2ˆ(-51)");
print_bits(2. + (2. * x52), " 2 + 2ˆ(-51)");
x = 1.; for (i = 0; i < 1022; i++) x /= 2.; print_bits(x, " 2ˆ(-1022)");
print_bits(x * x52, " 2ˆ(-1074)");

printf("|\\___ ____/\\_________________________ _______________________/\n");
printf("| \\/ \\/\n");
printf("sign exponent (11 bits) fraction (52 bits)\n");

return 0; }
[...]/teaching/2019-4/math_575a/notes/C$ cc print_bits.c
[...]/teaching/2019-4/math_575a/notes/C$ ./a.out
0000000000000000000000000000000000000000000000000000000000000000 0
0011111111110000000000000000000000000000000000000000000000000000 1
1011111111110000000000000000000000000000000000000000000000000000 -1
0011111111100000000000000000000000000000000000000000000000000000 1/2
0011111111010000000000000000000000000000000000000000000000000000 1/4
0011111111010101010101010101010101010101010101010101010101010101 1/3
0100000000000000000000000000000000000000000000000000000000000000 2
0100000000010000000000000000000000000000000000000000000000000000 4
0011111111111000000000000000000000000000000000000000000000000000 1 + 1/2
0011111111110000000001000000000000000000000000000000000000000000 1 + 2ˆ(-10)
0011111111110000000000000000000000000000000000000000000000000001 1 + 2ˆ(-52)
0011111111101111111111111111111111111111111111111111111111111110 1 - 2ˆ(-52)
0011111111110000000000000000000000000000000000000000000000000010 1 + 2ˆ(-51)
0100000000000000000000000000000000000000000000000000000000000001 2 + 2ˆ(-51)
0000000000010000000000000000000000000000000000000000000000000000 2ˆ(-1022)
0000000000000000000000000000000000000000000000000000000000000001 2ˆ(-1074)
|\___ ____/\_________________________ _______________________/
| \/ \/
sign exponent (11 bits) fraction (52 bits)
[...]/teaching/2019-4/math_575a/notes/C$
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where ∗ is any of four +, −, ·, / operations, with⊕, 	, �, � being their floating point analogues. We
will call εmachine-valid any floating-point arithmetic implementation, such that the numerical arith-
metic operations of addition, subtraction, multiplication, and division do satisfy (1).

Problems and exercises
1. Find the minimal positive integer n in FPFPFPN such that n+1 is already not in FPFPFPN .
2. Prove that if num(x) = 0, then x = 0.
3. Prove that if x� y = 0, then at least one of x and y is equal to 0 (FPFPFPN has no zero divisors).
4. Obviously, [in virtual implementation] addition ⊕ and multiplication � operations in FPFPFPN are

commutative. Also 0 and 1 are indeed neutral elements for addition and multiplication, respectively
[why?]. Prove of disprove by counterexample that addition ⊕ is (a) associative, (b) has opposites;
multiplication � is (c) associative, (d) has inverses; and (e) distibutive property holds.

5. Plot the polynomial P(x) = (x−4)6 computed as(((
((x6−24x5)+240x4)−1280x3)+3840x2

)
−6144x

)
+4096

for x = 3.98,3.98002,3.98004, ...,4.02. Explain the quantization of the values of P(x). Also plot P(x)
computed as (x−4)6.

2 Stable and unstable numerical algorithms
Definition 2.1: A numerical algorithm is a mapping F : X ⊆RRRm→FPFPFPn

N from m-dimensional input
data to n-dimensional output, with the way how the mapping is computed [including how the input is
processed and how the output is interpreted] being clearly described. It is an attempt to numerically
simulate an ideal mapping Fexact : X → RRRn (which is the underlying [mathematical] problem, as in
[TrBa97, Lec. 12]).

Example 2.1: Consider, e.g., the problem of finding the point on a circle x2 + y2 = 1 that is the
closest to a given point (x0, y0). A possible algorithm for solving it would be a mapping (x0, y0) ∈
RRR2\(0,0) 7→

(
x0/
√

x2
0 + y2

0, y0/
√

x2
0 + y2

0
)
, here m = n = 2. Another algorithm would be a mapping

(x0, y0) 7→ ϕ ..= atan2(y0,x0), with n = 1, and the output is interpreted as the point (cosϕ, sinϕ).9

Let us say, we want to calculate F(xxx), with xxx ∈RRRm being the input. Obviously, the components
of xxx are not necessarily exactly representable in FPFPFPN . Inevitably one can expect a relative error about
εmachine just from entering xxx into a computer. Instead of calculating F(xxx), we are computing F(xxx+∆xxx),
where ∆xxx, which is called backward error, could be just a round off error in xxx.10

Definition 2.2: An algorithm F is called backward stable, if for any input xxx we have F(xxx) =
Fexact(xxx+ηηη) with ‖ηηη‖ ∼ εmachine‖xxx‖.11 In other words, the output F(xxx) is the exact answer to the
problem with input relatively very close to xxx.12

An algorithm being backward stable is the best one can hope for, as backward error is unavoid-
able. In Example 2.1 the atan2 version is backward stable, while m = n = 2 version is not, as the

9 atan2 in C — arc tangent function of two variables.
10 Sometimes the input is known only up to some uncertainty. In many cases, e.g., weather prediction, people compute

F(xxx+∆xxx), with several ∆xxx of the order of the uncertainty, to estimate the resulting uncertainty in F(xxx).
11 Here ‖·‖ is a magnitude measured somehow. See definition of norm in MATH 527 (theory) course, and also Sec 4.1.
12 It is assumed that all floating point arithmetical operations inside the algorithm F are done in [some] εmachine-valid

implementation. One can introduce a notion of virtually backward stable algorithm, if virtual implementation is used.
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resulted point may be not exactly on the unit circle (whenever the exact answer lies in a lower than
n dimensional submanifold, it is almost hopeless for the numerical answer to be in it and for the
algorithm to be backward stable).

Definition 2.3: An algorithm F is called stable, if for any [reasonable of feasible] input xxx we have
F(xxx) = Fexact(xxx+ηηη)+εεε with ‖ηηη‖ ∼ εmachine‖xxx‖ and ‖εεε‖ ∼ εmachine‖F(xxx)‖. In other words, the output
F(xxx) is relatively close answer to the exact one for the problem with input very close to xxx.

Any backward stable algorithm is stable, but not vice versa. Both algorithms in Example 2.1 are
stable. Both definitions of backward stable and stable algorithms are about asymptotic behavior of
errors in the limit εmachine→ 0. Namely, for sufficiently small εmachine, the relative errors are bounded
by some constant multiplied by εmachine.13

Example 2.2: computing exp(x) using Taylor series
A typical scenario in which numerical accuracy is lost is when a small number is obtained as a

sum/difference of almost opposite / same numbers.
Algorithm exp(x)∧: Input: x ∈RRR. Output: exp(x), computed by summing ∑

∞
n=0 xn/n! from left

to right, stopping when adding a term does not change the partial sum.

[...]/teaching/2019-4/math_575a/notes/Python$ cat exp.py
from math import exp
for x in [-50., -40., -30., -20., -15., -10., -2., -1., 0., 1., 10., 30.]:

taylor, sum, n, xnf = 0., 1., 1, x
while taylor != sum:

taylor, sum, n, xnf = sum, sum + xnf, n + 1, x * xnf / (n + 1.)
print(’exp({0: 3.0f}.) = {1: .15e} = {2:.15e}’.format(x, taylor, exp(x)))

[...]/teaching/2019-4/math_575a/notes/Python$ python exp.py
exp(-50.) = 1.107293338289197e+04 = 1.928749847963918e-22
exp(-40.) = -3.165731894063124e+00 = 4.248354255291589e-18
exp(-30.) = -3.066812356356220e-05 = 9.357622968840175e-14
exp(-20.) = 5.621884472130418e-09 = 2.061153622438558e-09
exp(-15.) = 3.059094197302007e-07 = 3.059023205018258e-07
exp(-10.) = 4.539992962303128e-05 = 4.539992976248485e-05
exp( -2.) = 1.353352832366128e-01 = 1.353352832366127e-01
exp( -1.) = 3.678794411714424e-01 = 3.678794411714423e-01
exp( 0.) = 1.000000000000000e+00 = 1.000000000000000e+00
exp( 1.) = 2.718281828459046e+00 = 2.718281828459045e+00
exp( 10.) = 2.202646579480671e+04 = 2.202646579480672e+04
exp( 30.) = 1.068647458152447e+13 = 1.068647458152446e+13
[...]/teaching/2019-4/math_575a/notes/Python$

The series ∑
∞
n=0 xn/n! converges for any x. If the operations with numbers are done exactly, then

the algorithm (although never finishing, as the whole series needs to be went through) would output
an exact answer. When x is large and negative, some terms in the series are large, although the
answer is small. The small answer exp(−|x|) is produced as an almost cancellation of as large as
exp(|x|) numbers. Whenever |x| is so large, that exp(−|x|) is of the order of 2−N exp(|x|), one should
not trust any digits of an outputted answer. For IEEE double precision (N = 52) this happens for
x∼− ln(252)/2≈−18. The algorithm is heavily unstable when applied to large negative x.

13 For the algorithm to be practically useful, it doesn’t necessarily have to be stable. Let us call an algorithm ζ-
semistable with 0 < ζ≤ 1, if limεmachine→0+ ln(relative errors)/ ln(εmachine) = ζ. The Algorithm ζ(3)∧ from Example 2.3 is
(2/3)-semistable, while Algorithm π∩ from Example 2.4 and possible algorithm from Example 3.2 are (1/2)-semistable.
The Algorithm exp(1)∧ from Example 2.2 that computes e≈ 2.72 is 1-semistable, but [strictly speaking] is not stable.
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5

Even when applied for x > 0 only (i.e., when there are no sign changes in the term of the series),
the algorithm is not [strictly speaking] backward stable. The larger is N, the larger is the number of
terms that one needs to sum (although here it slowly grows with N, as n! grows very fast). When
the partial sum is already not much smaller than the answer, each addition potentially introduces a
relative error of the order of εmachine.

In practice, for large positive x, one would expect [why?] the algorithm to produce exp(x) ·
(
1+

O(x1/2εmachine)
)
, or maybe even exp(x) ·

(
1+O(x1/4εmachine)

)
.

Example 2.3: computing ζ(3) by summing the series
Whenever one has a bunch of numbers to sum, it is more safe to add small numbers together first,

and add large numbers later.
Let us consider two algorithms for computing

Apéry’s14 constant ζ(3) ..=
∞

∑
n=1

1
n3 = 1.202056903159594285...

Algorithm ζ(3)∧: Input: none. Output: ζ(3), computed by summing ∑
∞
n=1 1/n3 from left to right,

stopping when adding a term does not change the partial sum.
Algorithm ζ(3)∨: Input: none. Output: ζ(3), computed by summing ∑

∞
n=1 1/n3 from right to

left, starting at some sufficiently large n.
[...]/teaching/2019-4/math_575a/notes/Python$ cat zeta3.py
zeta3, sum, n = 1., 0., 1
while zeta3 != sum:

zeta3, sum, n = sum, sum + 1. / float(n**3), n + 1
print(’ forward summation: zeta(3) = {0:.15f}’.format(zeta3))
zeta3, n = 0., 25000000
while n > 0:

zeta3, n = zeta3 + 1. / float(n**3), n - 1
print(’backward summation: zeta(3) = {0:.15f}’.format(zeta3))
[...]/teaching/2019-4/math_575a/notes/Python$ python3 zeta3.py
forward summation: zeta(3) = 1.202056903150321
backward summation: zeta(3) = 1.202056903159594
[...]/teaching/2019-4/math_575a/notes/Python$

14 R. Apéry, Irrationalité de ζ(2) et ζ(3), Astérisque 61, 11–13 (1979). [Number ζ(3) is proved to be irrational.]
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As it is not possible to represent the number ζ(3) exactly in FPFPFPN [for any finite N], any numerical
algorithm for computing ζ(3) can not be backward stable. The answer in Algorithm ζ(3)∧ ignores
the tail of the series starting at about n∗ ∼ 1/ε

1/3
machine, and the value of the ignored tail is about 1/n2

∗ ∼
ε

2/3
machine — about 2/3 of the significant digits should be correct.

Example 2.4: computing π by maximizing sin(·)
Another common source of accuracy loss is determining a quantity from a function which is not

very sensitive to it, e.g., finding position of an extremum of a function.
Algorithm π∩: Input: none. Output: π, determined as 2 multiplied by the position of the first

maximum of sin(x). The latter computed as the largest x such that sin(x) still grows locally:

[...]/teaching/2019-4/math_575a/notes/C$ cat find_pi.c
#include <stdio.h>
#include <math.h>
int main() { double pi2, step;

for (pi2 = 0., step = 1.; pi2 + step != pi2; )
if ((sin(pi2 + 2. * step) > sin(pi2 + step))
&& (sin(pi2 + step) > sin(pi2)))
pi2 = pi2 + step; else step *= 0.5;

printf("computed pi = %22.16e\n", 2. * pi2);
printf(" pi = %22.16e\n", M_PI);
return 0; }

[...]/teaching/2019-4/math_575a/notes/C$ cc find_pi.c -lm
[...]/teaching/2019-4/math_575a/notes/C$ ./a.out
computed pi = 3.1415926218032837e+00

pi = 3.1415926535897931e+00
[...]/teaching/2019-4/math_575a/notes/C$

Here π is found from the maximization of sin(x) near x = π/2. We have sin(x)≈ 1−(x−π/2)2/2
there. Whenever (x−π/2)2 ∼ 2−N , the difference of sin(x) from 1 is too small for FPFPFPN to handle. At
the distance about 2−N/2 from π/2 the numerical function sin(x) stops to change, which causes only
about half of the digits in computed value of π to be correct.

[...]/teaching/2019-4/math_575a/notes/C$ cat sin_near_1.c
#include <stdio.h>
#include <math.h>
double x53;
double f(double x) { return (x53 * (1. - sin(x))); }
int main() { int i;

for (x53 = 1., i = 0; i < 53; i++) x53 *= 2.;
printf("f(x) = 2ˆ(53) * (1 - sin(x))\n");
printf("f(pi / 2 - 2.e-8) = %6.4f\n", f(M_PI / 2. - 2.e-8));
printf("f(pi / 2 - 1.8e-8) = %6.4f\n", f(M_PI / 2. - 1.8e-8));
printf("f(pi / 2 - 1.1e-8) = %6.4f\n", f(M_PI / 2. - 1.1e-8));
printf("f(pi / 2 - 1.05e-8) = %6.4f\n", f(M_PI / 2. - 1.05e-8));
printf("f(pi / 2 - 1.e-8) = %6.4f\n", f(M_PI / 2. - 1.e-8));
printf("f(pi / 2) = %6.4f\n", f(M_PI / 2.));
printf("f(pi / 2 + 1.e-8) = %6.4f\n", f(M_PI / 2. + 1.e-8));
return 0; }

[...]/teaching/2019-4/math_575a/notes/C$ cc sin_near_1.c -lm
[...]/teaching/2019-4/math_575a/notes/C$ ./a.out
f(x) = 2ˆ(53) * (1 - sin(x))
f(pi / 2 - 2.e-8) = 2.0000
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f(pi / 2 - 1.8e-8) = 1.0000
f(pi / 2 - 1.1e-8) = 1.0000
f(pi / 2 - 1.05e-8) = 0.0000
f(pi / 2 - 1.e-8) = 0.0000
f(pi / 2) = 0.0000
f(pi / 2 + 1.e-8) = 0.0000
[...]/teaching/2019-4/math_575a/notes/C$

IEEE double precision, similar to FPFPFP52, contains numbers 1− k · 2−53 and 1+ k · 2−52 with [not too
large] non-negative k necessarily being integer. For up to |x− π/2| < 10−8 this integer number, in
order to represent the value of sin(x) better, is equal to 0.

Problems and exercises
1. Consider the following algorithm: Input: two vectors

xxx,yyy ∈RRRn. Output: geometric angle between the two vectors,
computed as arccos

(
(xxx ·yyy)/‖xxx‖‖yyy‖

)
. The norm ‖xxx‖ is calcu-

lated as
√

xxx ·xxx. It this algorithm backward stable, stable but
not backward stable, or unstable?

2. The graph on the right is the result of numerical cal-
culation of (exp(x)−1)/x (being computed as it is written).
On the other hand, if the function would be computed as
(exp(x)−1)/ ln(exp(x)), then the result would be very close
to 1 (as it should be). Explain the difference between the two
cases.15 16

10−15 10−14 10−13
0.9

1

1.1

x

y

3 Condition number
Consider a numerical algorithm F : X ⊆RRRm→FPFPFPn

N . As there are inevitable rounding off errors in
processing the input (and in internal calculations), it is important to realize how sensitive F is to small
perturbations of the input. A useful quantity to measure that is [relative] condition number, which is
defined as

κ(F,xxx) ..=
‖F(xxx+∆xxx)−Fexact(xxx)‖

‖Fexact(xxx)‖︸ ︷︷ ︸
relative change of output due to perturbation ∆xxx and numerical errors

/of the order of εmachine︷ ︸︸ ︷
‖∆xxx‖
‖xxx‖

, κ(F) ..= max
xxx∈X

κ(F,xxx)

This definition is loose, as how the magnitude ‖ · ‖ of relative changes is measured is not specified. If
all computations inside the algorithm are assumed to be exact, the condition number is the property
of the mapping Fexact ifself (or of underlying the [mathematical] problem, as in [TrBa97, Lec. 12]).
In the limit εmachine→ 0 and in the case of that mapping being differentiable, the condition number is
determined by Jacobian of Fexact mapping: κ(Fexact,xxx) = ‖J(Fexact)

∣∣
at xxx‖‖xxx‖/‖Fexact(xxx)‖.

Example 3.1: Consider a function that is ath power a number: ·a : x 7→ xa, with m = n = 1 (here
x > 0 and a is fixed). In the limit εmachine→ 0, we have κ(·a) =

(
(xa)′/xa)/(1/x) = a.

[Pathological] Example 3.2: Consider the mapping H : [0,1]→ [0,1]2 which is the Hilbert curve.

15 You can assume that both exp(·) and ln(·) are implemented as “numerical f ”(x) = num
(

f (inj(x))
)
.

16 Look up expm1 in Python — ex−1 to full precision, even for small x.
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H1 H2 H3 H4 H5

We have H = lim
n→∞

Hn. One has κ(H) ∼ ε
−1/2
machine. Even if implemented in the best possible way, the

algorithm would produce only half of the answer’s signigicant digits right.
Example 3.3: Consider the algorithm 	 : (x,y) ∈RRR2 7→

(
num(x)	num(y)

)
∈ FPFPFPN , with m = 2

and n = 1, which calculates the difference between the numbers x and y. We have

κ(	,x,y) = εmachine|x|+ εmachine|y|
|x− y|

· 1
εmachine

=
|x|+ |y|
|x− y|

The condition number is large when x and y are relatively close, i.e., when the result x− y is much
smaller than x or y. Addition /subtraction of large numbers resulting in small number could greatly
deteriorate the relative accuracy. (See, e.g., Example 2.2.)

Example 3.4: In “Lucky Numbers” part of “Surely, You are joking, Mr. Feynman” an “impos-
sible” task to calculate tan(10100) [in one minute with 10% accuracy, no computer,] is posed. On a
computer, if you use standard single or double accuracy floating point numerical system, you have
only 8 or 16 signigicant [decimal] digits, while in order to find out where 10100 is inside the period of
tan(·), you need to know π with no less than 100 digits.

[...]/teaching/2019-4/math_575a/notes/C$ cat size_of.c
#include <stdio.h>
int main() { printf("sizeof( float ) = %2lu\n", sizeof(float));

printf("sizeof( double ) = %2lu\n", sizeof(double));
printf("sizeof(long double) = %2lu\n", sizeof(long double)); return 0; }

[...]/teaching/2019-4/math_575a/notes/C$ cc size_of.c
[...]/teaching/2019-4/math_575a/notes/C$ ./a.out
sizeof( float ) = 4
sizeof( double ) = 8
sizeof(long double) = 16
[...]/teaching/2019-4/math_575a/notes/C$

The C type long double is non-standard, and its size could be anything starting at 8 bytes. In 90s
personal computers its size was typically 8 bytes. Later it was sometimes 12 bytes. FORTRAN has
real*16 and complex*32 types, but [if you have concerns about the speed] you may check whether
they are natively supported. Even with 16 bytes you get about 30 < 100 digits. There is a lot of
software to work with arbitrary- or multiple-precision, allowing very large integers and floats having
plenty of significant digits.17 Here is tan(10100) being calculated by Wolfram|Alpha and GP/PARI:

[...]/teaching/2019-4/math_575a/notes/gp-pari$ gp
[... technical stuff ...]

GP/PARI CALCULATOR Version 2.11.1 (released)
[... copyright notice and links ...]
parisize = 8000000, primelimit = 500000, nbthreads = 4
? tan(10ˆ100)

17 GNU MP, UBASIC, mpmath, and many, many more.
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%1 = 0.40123196199081435418575434365329495832
? tan(10.ˆ100.)

*** at top-level: tan(10.ˆ100.)

*** ˆ-------------

*** tan: precision too low in mpcosm1.

*** Break loop: type ’break’ to go back to GP prompt
break> break

? \p 120
realprecision = 134 significant digits (120 digits displayed)

? tan(10ˆ100)
%2 = 0.40123196199081435418575434365329495832387026112924406831944153811687180982
2119121146726730974932083113492712621181822475
? tan(10.ˆ100.)
%3 = 0.40123196199081435418575434365329431547967876097344489380489940895672341186
4441328951791123274926250333504377945214070810
? \p 220

realprecision = 231 significant digits (220 digits displayed)
? tan(10ˆ100)
%4 = 0.40123196199081435418575434365329495832387026112924406831944153811687180982
211912114672673097493208311349271262118182247468378149091725522386243554917465545
72278444011172023509553194989577824397574359217596118498629727863
? tan(10.ˆ100.)
%5 = 0.40123196199081435418575434365329495832387026112924406831944153811687180982
211912114672673097493208311349271262118182247468378149201640926687195833512454722
66034500751505991421028525329520891978238245005013166636841753125
? quit
Goodbye!
[...]/teaching/2019-4/math_575a/notes/gp-pari$

The expressions tan(10ˆ100) and tan(10.ˆ100.) are parsed differently by GP/PARI, and from the
output for the latter one can deduce that about 100 last digits are wrong, consistently with κ(tan(x)) =
2x/sin(2x)∼ |x| and x = 10100.

Problems and exercises
1. Write a program that calculates the Hilbert curve H(x), 0 ≤ x ≤ 1 (Example 3.2). Compute

H(1/3) and H(1/
√

2) using single and double precision. How many digits are correct?
2. Consider an algorithm f ′h : RRR→ FPFPFPN that estimates the derivative of the function f (which we

can compute at any point in stable way) at x as the finite difference
(

f (x⊕h)	 f (x)
)
�h. Assuming

that f (x) near the point of interest doesn’t have any dramatic features (e.g., f , f ′, f ′′, ... are of the order
of f , f/L, f/L2, ..., where L is characteristic scale of x) find how κ( f ′h) depends on h and εmachine.
Which h would you choose? Estimate f ′(1) for f (x) = 1/(1+ x2) using h = 10−n, n = 0,1,2, ...,17.
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Part II

Numerical Linear Algebra
4 Matrices, singular value decomposition (SVD)

4.1 Matrices, vectors, orthogonality, norms
An m×n matrix is a rectangular table of numbers /matrix elements, with m rows and n columns.

The matrix could originate from writing down in a neat way the coefficients of the system of m linear
equations with n variables; or correspond to a linear transformation CCCn→CCCm.

An m× 1 matrix with just one column is an m-dimensional vector. An m× n matrix could be
viewed as an [ordered] collection of n such vectors /columns. A 1×1 matrix [a ] could be identified
with its only matrix element a as a number.

A matrix element of the matrix Â (B̂, Γ̂, etc.) at ith row and jth column will be denoted as
(Â)i j = ai j (bi j, γi j, ...). We will call a [not necessarily square] m×n matrix Â diagonal, if (Â)i j = 0
whenever i 6= j. A diagonal matrix is fully determined by its diagonal matrix elements, e.g., Â =
diag(a11,a22, ...,all), where l = min(m,n). We will denote m×n zero matrix (all matrix elements are
zero) as Ôm,n, while În = diag(1,1, ...,1) will stand for n×n identity matrix, with (În)i j = δi j.

A dot product or scalar product (making CCCm an inner product space) of two vectors xxx = [xi ] and
yyy = [yi ] is defined as 〈xxx,yyy〉= xxx ·yyy ..= ∑

m
i=1 x∗i yi, where ·∗ stands for complex conjugation. The latter is

needed so that xxx ·xxx=∑i |xi|2 is always a non-negative real. A number ‖xxx‖ ..=
√

xxx ·xxx is called a [L2-norm
or] length of vector xxx. Unit vectors are vectors of length 1. We say two vectors xxx and yyy are othogonal,
if xxx ·yyy = 0. Zero vector 000 is orthogonal to any vector.

For Â : CCCn→CCCm, the adjoint Â† is introduced through 〈Â†xxx,yyy〉 = 〈xxx, Âyyy〉 = ∑
m
i=1 x∗i ∑

n
j=1 ai j y j =

∑
n
j=1 ∑

m
i=1 ai j x∗i y j = ∑

n
j=1
(
∑

m
i=1 a∗i jxi

)∗y j, which gives (Â†) ji = a∗i j, or n×m matrix Â† = (ÂT)∗ is the
complex conjugate of the transpose of Â, or Hermitian conjugate of Â. A [necessarily square] matrix
Â is called Hermitian, if Â† = Â; it is the complex analogue of real symmetric matrix. The dot product
xxx ·yyy is equal to xxx†yyy as a 1×1 matrix, that is the product of 1×m matrix xxx† and m×1 matrix yyy.

We will call an m×n matrix Â unitary or orthogonal, if Â†Â = În. This is not a standard terminol-
ogy.18 19 Necessarily, we have m ≥ n, as rank Â ≤ min(m,n). The statement Â†Â = În simply means
that all columns of Â are unit vectors (the diagonal of În) that are pair-wise orthogonal (off-diagonal
content of În).

In some cases other than “L2” norms are more convenient. Commonly used vector norms are

Lp-norm : ‖xxx‖p
..=
(
|x1|p + |x2|p + ...+ |xm|p

)1/p
, 1≤ p <+∞

L∞-norm : ‖xxx‖∞
..= max

(
|x1|, |x2|, ...|xm|

)
= lim

p→+∞
‖xxx‖p

L0-“not a norm” : ‖xxx‖0
..=
(
number of non-zero components of xxx

)
weighted norm : ‖xxx‖Ŵ ..= ‖Ŵxxx‖, rankŴ = m, arbitrary norm on the right

18 In standard definition, a matrix Û is unitary if it is square, invertible, and Û−1 = Û†.
19 People sometimes consider complex matrices Q̂ such that Q̂−1 = Q̂T, and call them orthogonal. All such matrices

form a Lie group [why?]. Real orthogonal matrices are unitary.
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For matrices / linear transformations /operators most useful are induced or operator norms:

Â : X → Y , ‖Â‖ ..= sup
xxx∈X ,xxx 6=000

‖Âxxx‖in Y
‖xxx‖in X

= sup
xxx∈X ,‖xxx‖in X =1

‖Âxxx‖in Y

When both X and Y are finite dimensional, the operator norm is finite (the transformation is continuos
and the “sphere” ‖xxx‖in X = 1 is compact).

Plenty of other norms in the vector space CCCmn of m×n matrices could be constructed, and some
of them are in use. Let us mention Frobenius or Hilbert–Schmidt norm:

Â = [ai j ], aaa j = [ai j ], ‖Â‖2
F

..=
m

∑
i=1

n

∑
j=1
|ai j|2 =

n

∑
j=1
‖aaa j‖2

2 = tr
(
Â†Â

)
= tr

(
ÂÂ†)= ‖Â†‖2

F

Let Q̂ be an m×n unitary matrix. Then for any xxx ∈CCCn we have ‖Q̂xxx‖2 = ‖xxx‖2. More generally,
for any n× l matrix Â we have ‖Q̂Â‖F = ‖Â‖F.20

4.2 Singular Value Decomposition (SVD)
For clearer geometrical images, let us consider a real m×n matrix Â, and a corresponding linear

transformation Â : RRRn→RRRm. An image of a (n−1)-sphere SSSn−1 ⊂RRRn is an [hyper]ellipsoid (which
could be degenerate) in RRRm, whose principal sizes (or the lengths of the principal semi-axes) and
orientation are important characteristics of Â. Let us denote the jth, 1 ≤ j ≤ m, principal semi-axis
as σjuuu j, where ‖uuu j‖2 = 1, so the semi-axis length is σj ≥ 0. Geometrically, all the semi-axes, i.e.,
uuu-vectors, are orthogonal to each other. (Obviously, no more than n σ’s are non-zero.)

Definition /Theorem 4: Any [real or complex] m×n matrix Â has a [reduced] Singular Value De-
composition (SVD) Â = Û Σ̂V̂ †, where m× l matrix Û and l×n matrix V̂ are unitary, while l× l ma-
trix Σ̂ is real diagonal, with non-negative [and non-increasing] diagonal entries. Here l = min(m,n).21

The diagonal entries of Σ̂ are called singular values, while the columns of the matrix Û / V̂ are called
left /right singular vectors.

Proof [and Algorithm SVDÂ†Â]:22 Let us consider the case m ≥ n (otherwise construct SVD
of Â†, and then Hermite conjugate). Construct the n× n matrix Â†Â. It is Hermitian, thus it is
diagonalizable, with real eigenvalues and orthogonal eigenvectors. It is also positive definite,23 so all
its eigenvalues are non-negative. We can write Â†Â = V̂ Σ̂2V̂ †, where V̂ is n×n unitary matrix; matrix
Σ̂ is n× n real diagonal. We can choose the diagonal entries of Σ̂ to be non-negative. By permuting
the columns of V̂ , we can reorder the diagonal entries of Σ̂ in non-increasing order. The jth column
of Û , the vector uuu j, is set to Âvvv j/σ j if σ j > 0, or chosen arbitrarily from the orthogonal completion
to the previous columns of Û if σ j = 0. We still have to prove two statements: 1) Û is unitary; and
2) Â = Û Σ̂V̂ †.

For 1) we need to show that columns of Û (it is enough to consider only non-zero σ’s) are unit vec-
tors that are orthogonal to each other. We have 〈uuui,uuu j〉 = uuu†

i uuu j = (Âvvvi)
†Âvvv j/σiσ j = vvv†

i Â†Âvvv j/σiσ j =

vvv†
i V̂ Σ̂2V̂ †vvv j/σiσ j = eee†

i Σ̂2eee j/σiσ j = δi j (as Σ̂2 is diagonal).

20 Whenever the product ÛB̂V̂ † is defined, and the matrices Û and V̂ are unitary, we have ‖ÛB̂V̂ †‖F = ‖B̂‖F.
21 Not so rarely considered full SVD is a factorization Â = Û Σ̂V̂ †, where square m×m matrix Û and n× n matrix V̂

are unitary, and m×n matrix Σ̂ is diagonal (with non-negative numbers on the main diagonal).
22 For a different proof, see [TrBa97, Theorem 4.1, p. 29].
23 For any vector vvv we have 〈vvv, Â†Âvvv〉= vvv†Â†Âvvv = (Âvvv)†Âvvv = ‖Âvvv‖2

2 ≥ 0.
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For 2), vectors vvv j, j = 1, ...,n, form a basis of CCCn [why?], so any vector vvv ∈CCCn is a [unique] linear
combination of them. It is enough to check Âvvv j = Û Σ̂V̂ †vvv j = Ûσ jeeej = σ juuu j for all 1 ≤ j ≤ n. If
σ j > 0, then we have Âvvv j = σ juuu j by construction of uuu j. If σ j = 0, then vvv†

j Â
†Âvvv j = σ2

j = 0 = ‖Âvvv j‖2
2,

thus Âvvv j = 000 = σ juuu j.
Once the singular values are ordered, the matrix Σ̂ is unique. For any j we can multiply vvv j by

any number c with absolute value |c|= 1 (only c =−1 is interesting in real case), and both ‖vvv j‖2 and
‖Âvvv j‖2 are not going to change. For some matrices (when singular values coincide) the choice for V̂
is even richer. I.e., for any square unitary matrix V̂ we have Î = V̂ †V̂ as the SVD of the identity matrix
Î. Generally, we can make an arbitrary unitary rotation of V̂ ’s (and simultaneously of Û’s) part that
corresponds to the same singular value.

Example 4: Consider the matrix on the right. Both of its eigenvalues are
equal to 1. Let us proceed with the SVD of Â in Octave24 and on paper:

Â =

[
1 1
0 1

]
[...]/teaching/2019-4/math_575a/notes/Octave$ octave-cli
GNU Octave, version 4.2.1
[... copyright notice and links ...]
octave:1> format long
octave:2> A = [1, 1; 0, 1]
A =

1 1
0 1

octave:3> [U, S, V] = svd(A)
U =

0.850650808352040 -0.525731112119134
0.525731112119134 0.850650808352040

S =

Diagonal Matrix

1.618033988749895 0
0 0.618033988749895

V =

0.525731112119134 -0.850650808352040
0.850650808352040 0.525731112119134

octave:4> B = U * S * V’
B =

1.00000000000000e+00 1.00000000000000e+00
1.11022302462516e-16 1.00000000000000e+00

octave:5>

Â†Â =

[
1 1
1 2

]

det
(
λÎ2− Â†Â

)
= λ

2−3λ+1

σ2
1,2 = λ1,2 =

1
2

(
3±
√

5
)

σ1,2 =
√

λ1,2 =
1
2

(√
5±1

)
= ϕ±1

Â†Â
[

1
ϕ

]
︸ ︷︷ ︸√
1+ϕ2 vvv1

=
(
ϕ

2 = σ
2
1
)[ 1

ϕ

]
note: 1+ϕ = ϕ2

uuu1 =
Âvvv1

σ1
=

[
1 1
0 1

][
1
ϕ

]
ϕ
√

1+ϕ2
=

[
ϕ

1

]
√

1+ϕ2

find vvv2 and uuu2 in a similar way, or from orthogonality

24 MATLAB R© is a commercial software, see MathWorks MATLAB licensing for UA Faculty, Staff & Students.
GNU Octave is one of several (less effective) free alternatives to MATLAB, with mostly compatible syntax.
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The Algorithm SVDÂ†Â is good for pen and paper calculations, but it is not numerically stable.
The problem of diagonalization of Â†Â has condition number κ2(Â), instead of κ(Â).

We will not discuss numerical algorithms for the computation of SVD in detail. See, e.g., [GoVa96,
Sec. 8.6] and [Dem97, Sec. 5.4].

Here are some properties of SVD (here Â is an m×n matrix, and l = min(m,n)):

Â =
l

∑
i=1

σiuuuivvv
†
i , ‖Â‖2

F =
l

∑
i=1

σ
2
i , ‖Â‖2 = σ1,

〈〈〈
σ1,uuu1,vvv1

〉〉〉
= argmin
〈〈〈σ1,uuu1,vvv1〉〉〉

‖Â−σ1uuu1vvv†
1‖F

Â↓ ..= Â−σ1uuu1vvv†
1,

(
Â↓
)
↓ = Â−σ1uuu1vvv†

1−σ2uuu2vvv†
2, σ1(Â↓) = σ2(Â)

r

∑
i=1

σiuuuivvv
†
i is the best approximation (in ‖ · ‖2 and ‖ · ‖F norms) of Â by any matrix of rank r ≤ l

∣∣det Â
∣∣= l=m=n

∏
i=1

σi, if Â = Â†, then its diagonalization is almost (up to signs of λ’s) its SVD

4.3 Condition number of multiplication by a matrix
Consider a fixed m×n matrix Â. What is the [relative] condition number κ(Â·) of the problem of

multiplying a vector by Â?25

If n > m or the matrix Â is not of full rank, then it has a non-trivial null space. Any errors in
the computation of Âxxx = 000 for xxx ∈ null(Â) would be considered infinite in relative sense, and thus
κ(Â·) = ∞ by definition. Otherwise we have

κ(Â·,xxx) = max
εεε

sensitivity to xxx︷ ︸︸ ︷
‖Â(xxx+εεε)− Âxxx‖

‖εεε‖︸ ︷︷ ︸
‖Â‖=σ1

‖xxx‖
‖Âxxx‖

, κ(Â·) ..= max
xxx

κ(Â·,xxx) = σ1

σn

The denominator σn came from maximizing the ratio ‖xxx‖/‖Âxxx‖.

Problems and exercises
1. Two norms ‖ · ‖I and ‖ · ‖II are called equivalent if there exist constants 0 < C1 ≤ C2 such

that C1‖xxx‖I ≤ ‖xxx‖II ≤C2‖xxx‖I for all xxx. (a) Show that any two norms in RRRm are equivalent. (b) Find
constants C1 and C2 for any pair from ‖ · ‖1, ‖ · ‖2, and ‖ · ‖∞ norms.

2. Consider two operators Â : X → Y and B̂ : Y → Z, where the vector spaces X , Y , and Z are
normed. For induced norms, show that ‖B̂Â‖ ≤ ‖Â‖‖B̂‖.

3. Consider “dot product with uuu” operator uuu† : CCCn→CCC, where xxx 7→ uuu ·xxx = uuu†xxx. Find its (a) induced
L2-norm and (b) Frobenius norm.

4. Consider “multiplying by uuu” operator uuu : CCC→CCCm, where x 7→ xuuu. Find its (a) induced L2-norm
and (b) Frobenius norm.

5. Let Â be an m×n matrix, with an SVD Â = Û Σ̂V̂ †. Find the SVD of Â†.
6. Let Â be an m×n matrix. Consider (m+n)× (m+n) Hermitian matrix B̂ ..=

[
Ôn,n Â†

Â Ôm,m

]
.

How the singular values of Â and the eigenvalues of B̂ are connected?
7. Show that m×n, m≥ n, matrix is unitary if and only if all of its singular values are equal to 1.

25 The so called condition number κ(Â) of a matrix Â is defined in a similar but slightly different way: κ(Â) =
‖Â‖2‖Â+‖2, where Â+ is the Moore–Penrose pseudoinverse of Â.
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5 Systems of linear equations
Consider a system of linear equations Âxxx = bbb, with m×n matrix Â. A way to interpret the system,

which is often good while thinking theoretically, is: Â is the matrix of a linear transformation CCCn→
CCCm, and we try to find such vector xxx ∈CCCn that is transformed to bbb, i.e., Â : xxx 7→ bbb.

Let us assume for simplicity that Â is a full rank m×m matrix. Interpreting the system in way I),
the solution could be found by computing the inverse matrix and reversing the transformation Â:

Algorithm Â−1bbb: Input: Â and bbb. Output: xxx ..= Â−1bbb, i.e., you compute the inverse matrix Â−1 and
multiply the r.h.s. bbb by it.

Example 5: “Failure” of Â−1bbb in case of poorly conditioned matrix Â.

octave:1> format long
octave:2> A = [1 sqrt(2); sqrt(3) sqrt(6) + 1.e-13]
A =

1.000000000000000 1.414213562373095
1.732050807568877 2.449489742783278

octave:3> cond(A)
ans = 119564591877097.7
octave:4> B = inverse(A)
B =

24496352586638.59 -14142975760059.20
-17321537028348.06 10000594066094.83

octave:5> b = [sqrt(3); 3]
b =

1.732050807568877
3.000000000000000

octave:6> x = A \ b
x =

1.721172241704469e+00
7.692307692307693e-03

octave:7> y = B * b
y =

1.726562500000000e+00
3.906250000000000e-03

octave:8> A * x - b
ans =

-2.220446049250313e-16
0.000000000000000e+00

octave:9> A * y - b
ans =

Â =

[
1

√
2√

3
√

6+10−13

]

σ1 ∼ 1 and σ1σ2 = det Â = 10−13

bbb =

[ √
3

3

]

solution by \ (or mldivide) operator

solution by Algorithm Â−1bbb

15

https://www.mathworks.com/help/matlab/ref/mldivide.html


3.596415914275397e-05
6.229175088678929e-05

octave:10> A * [sqrt(3); 0] - b
ans =

0.000000000000000e+00
-4.440892098500626e-16

octave:11>

residual Â(Â−1bbb)−bbb is not too small

xxx =
[ √

3
0

]
is exact solution

Â−1bbb solution is numerically closer to it than solution by \,
but Â−1bbb provides orders of magnitude larger residual

This is a [forward] stable, but not a backward stable algorithm. The vector xxx is not far from the exact
solution, but the discrepance is such that it is not very plausible:

x1

x1

x1

x2

Â\bbb

Â−1bbb xxxCramer′s

xxxexact

Â−1bbb

xxxGE

x̃̃x̃xexact

Â\bbb

x2 x2

0

0.005

0.01

1.72 1.725 1.73 1.735

0.0035

0.004

1.7265 1.727

0.0075

0.008

1.7205 1.721 1.7215

15× 15×

Here the thick line is xxxexact + tvvv2, where vvv1 ≈
[

1
√

2
]T
/
√

3 and vvv2 ≈
[√

2 −1
]T
/
√

3 are the right
singular vectors of Â. The vector Â−1bbb−xxxexact has some vvv1 component, which gives rise to not so
small residual Â(Â−1bbb)−bbb.

Let us take the matrix Â and the r.h.s. bbb, put them into a computer with double precision (also
solve Âxxx = bbb by Gaussian elimination for illustration), and then exactly solve the system of 2 linear
equations with floating point number representations of Â and bbb, thinking about them as exact input:

[...]/teaching/2019-4/math_575a/notes$ cat C/A_x_eq_b.c
#include <stdio.h>
#include <math.h>
void print_bits(double x, char* s) { int i; unsigned char c;
for (i = 0; i < 8; i++) for (c = 128; c != 0; c >>= 1)

if (*((char *)(&x) + 7 - i) & c) printf("1"); else printf("0");
printf(" %s\n", s); }

int main() { int i; double A[2][2], b[2], x[2], det, G[2][2], x52;
A[0][0] = 1.; A[0][1] = sqrt(2.); /* Example 5 */
A[1][0] = sqrt(3.); A[1][1] = sqrt(6.) + 1.e-13;
print_bits(A[0][0], "a_11"); print_bits(A[0][1], "a_12");
print_bits(A[1][0], "a_21"); print_bits(A[1][1], "a_22");
b[0] = sqrt(3.); b[1] = 3.;
print_bits(b[0], "b_1"); print_bits(b[1], "b_2");

printf("|\\___ ____/\\_________________________ _______________________/\n");
printf("| \\/ \\/\n");
printf("sign exponent (11 bits) fraction (52 bits)\n\n");

x52 = 1.; for (i = 0; i < 52; i++) x52 *= 2.; /* x52 = 2ˆ52 */
printf("a_12 = %18.1f / 2ˆ52, a_21 = b_1 = %18.1f / 2ˆ52\n",
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x52 * A[0][1], x52 * A[1][0]);
printf("a_11 = 1, b_2 = 3, a_22 = %18.1f / 2ˆ52\n\n", x52 * A[1][1]);

printf("solution by Cramer’s rule:\n");
det = 1. / (A[0][0] * A[1][1] - A[0][1] * A[1][0]);
x[0] = (b[0] * A[1][1] - b[1] * A[0][1]) * det;
x[1] = (A[0][0] * b[1] - A[1][0] * b[0]) * det;
printf(" x = [%22.16e %22.16e]ˆT\n", x[0], x[1]);
printf(" residual A * x - b: [%e %e]ˆT\n", x[0] + A[0][1] * x[1] - b[0],
A[1][0] * x[0] + A[1][1] * x[1] - b[1]);

printf("solution Aˆ(-1) b:\n");
G[0][0] = A[1][1] * det; G[0][1] = -A[0][1] * det;
G[1][0] = -A[1][0] * det; G[1][1] = A[0][0] * det;
x[0] = G[0][0] * b[0] + G[0][1] * b[1];
x[1] = G[1][0] * b[0] + G[1][1] * b[1];
printf(" x = [%22.16e %22.16e]ˆT\n", x[0], x[1]);
printf(" residual A * x - b: [%e %e]ˆT\n", x[0] + A[0][1] * x[1] - b[0],
A[1][0] * x[0] + A[1][1] * x[1] - b[1]);

printf("solution by Gaussian elimination with complete pivoting:\n");
G[1][0] = A[1][0] / A[1][1]; x[1] = b[1] / A[1][1];
G[0][0] = A[0][0] - A[0][1] * G[1][0]; x[0] = b[0] - A[0][1] * x[1];
x[0] /= G[0][0]; x[1] -= G[1][0] * x[0];
printf(" x = [%22.16e %22.16e]ˆT\n", x[0], x[1]);
printf(" residual A * x - b: [%e %e]ˆT\n", x[0] + A[0][1] * x[1] - b[0],
A[1][0] * x[0] + A[1][1] * x[1] - b[1]);

return 0; }
[...]/teaching/2019-4/math_575a/notes$ cc C/A_x_eq_b.c -lm ; ./a.out
0011111111110000000000000000000000000000000000000000000000000000 a_11
0011111111110110101000001001111001100110011111110011101111001101 a_12
0011111111111011101101100111101011101000010110000100110010101010 a_21
0100000000000011100110001000111000010100000010010010001000001111 a_22
0011111111111011101101100111101011101000010110000100110010101010 b_1
0100000000001000000000000000000000000000000000000000000000000000 b_2
|\___ ____/\_________________________ _______________________/
| \/ \/
sign exponent (11 bits) fraction (52 bits)

a_12 = 6369051672525773.0 / 2ˆ52, a_21 = b_1 = 7800463371553962.0 / 2ˆ52
a_11 = 1, b_2 = 3, a_22 = 11031521092846622.0 / 2ˆ52

solution by Cramer’s rule:
x = [1.7321428571428570e+00 4.4642857142857140e-03]ˆT
residual A * x - b: [6.405503e-03 1.109466e-02]ˆT

solution Aˆ(-1) b:
x = [1.7265625000000000e+00 3.9062500000000000e-03]ˆT
residual A * x - b: [3.596416e-05 6.229175e-05]ˆT

solution by Gaussian elimination with complete pivoting:
x = [1.7267759562841529e+00 3.7298831131791221e-03]ˆT
residual A * x - b: [0.000000e+00 0.000000e+00]ˆT

[...]/teaching/2019-4/math_575a/notes$ gp
[... technical stuff ...]

GP/PARI CALCULATOR Version 2.11.1 (released)
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[... copyright notice and links, technical parameters ...]
? a11 = 2ˆ52; a12 = 6369051672525773; a21 = b1 = 7800463371553962; a22 = 1103152
1092846622; b2 = 3 * a11; det = a11 * a22 - a12 * a21
%1 = 2021703648790801886
? x1 = (b1 * a22 - b2 * a12) / det
%2 = 102697713703618710/59461872023258879
? x2 = (a11 * b2 - a21 * b1) / det
%3 = 3525341537980302/1010851824395400943
? 1. * x1
%4 = 1.7271187436454719105197015986197581099
? 1. * x2
%5 = 0.0034874958454854040546168999582954249611

The exact solution, x̃̃x̃xexact ≈
[

1.7271 0.0035
]T, of the “computerized” system (i.e., how it looks

like after the input data Â and bbb are put into FPFPFP52), is as different from non-computerized xxxexact =[ √
3 0

]T as solutions obtained by Gaussian elimination, xxxGE ≈
[

1.7268 0.0037
]T, or mldivide

operator, Â\bbb≈
[

1.7212 0.0077
]T.

5.1 System with orthogonal matrix
Consider a system Q̂xxx = bbb, where Q̂ is an m×m orthogonal or unitary matrix. The solution is

xxx ..= Q̂†bbb, which could be viewed as the one obtained by the Algorithm Â−1bbb (we have Q̂−1 = Q̂†).
Here the matrix of the system Q̂ is well conditioned though, κ(Q̂·) = 1. The L2-norm of the residual
is small:

∥∥Q̂
(
num(Q̂†)� num(bbb)

)
−bbb
∥∥

2 =
∥∥(num(Q̂†)� num(bbb)

)
− Q̂†bbb

∥∥
2 — we have Q̂Q̂† = Îm,

and multiplying a vector by unitary matrix Q̂† doesn’t change its L2-norm.

5.2 System with triangular matrix (see [TrBa97, Lec. 17])

Consider a system R̂xxx =bbb, where R̂ is an n×n upper triangular matrix, i.e., ri j = 0 whenever i > j.
We assume that det R̂ = r11r22...rnn 6= 0, i.e., the solution does exist and is unique. It can be found by
a procedure called back substitution (the matrix of the system is already in echelon form, i.e., most of
the work of excluding variables is done): the last equation means rnnxn = bn, so we immediately find
xn

..=bn/rnn. In the equation rn−1,n−1xn−1+rn−1,nxn = bn−1 only xn−1 is unknown, so we immediately
find it: xn−1 = (bn−1− rn−1,nxn)/rn−1,n−1. Next we find xn−2, and so on, till we finally find x1.

Algorithm “Back Substitution”: Input: upper triangular matrix R̂ and the r.h.s. bbb. Output: vector
xxx, computed according to the following pseudo-code:
for i = n, n−1, ..., 2, 1 do

B ..= bi
for j = n, n−1, ..., i+1 do (do nothing if n < i+1, i.e., if i = n)

B ..= B	 (ri j� x j)
xi

..= B� rii
return xxx

Alternatively, one can go from i+ 1 to n in for loop over j. There are n(n− 1)/2 multiplications
r� x, n(n−1)/2 subtractions B	 (rx), and n divisions B� r; overall n2 floating point operations.

The pseudo-code could be written in a different form (which ruins the input vector bbb, though):
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for i = n, n−1, ..., 2, 1 do

xi
..= bi� rii

for j = i−1, i−2, ..., 1 do (do nothing if i−1 < 1, i.e., if i = 1)

b j
..= b j	 (r ji� xi)

return xxx

Theorem 5: The Algorithm “Back Substitution” is backward stable. Moreover, we can interpret
the output as the exact solution for the problem (R̂+∆R̂)xxx = bbb with ‖∆R̂‖ ∼ εmachine‖R̂‖, i.e., we
need to slightly change only the matrix R̂, with the r.h.s. bbb being untouched. Moreover, we can
show that ∆ri j ∼ εmachineri j, i.e., we can choose the matrix ∆R̂ in such a way, that each of its matrix
elements is a small, ∼ εmachine, change of the corresponding matrix element of R̂. More specifically,∣∣(∆ri j)/ri j

∣∣≤ (n+1− j)εmachine +O(ε2
machine).

26

Proof : Consider the case n = 3 and the calculation of x1:

x1
..=
((

b1	 (r13� x3)
)
	 (r12� x2)

)
� r11

x1 =
((

b1− r13x3(1+ ε13)
)
(1+δ13)− r12x2(1+ ε12)

)
(1+δ12) ·

(1+η1)

r11

Here |εi j|, |δi j|, and |ηi| are all not greater than εmachine: ε’s are numerical errors introduced in calcu-
lation ri jx j, δ’s are introduced while doing subtractions, and η’s are due to divisions. The formula for
x1 could be rewritten as

x1 =
b1− r13x3(1+ ε13)− r12x2(1+ ε12)(1+δ13)

−1

r11(1+η1)−1(1+δ12)−1(1+δ13)−1

Whenever we are doing subtraction, we push the numerical error as a change in r’s on the left. Each
non-diagonal r has potential need for change due to rx multiplications. Diagonal r’s have additional
potential need to change due to divisions.

Whenever we present the matrix Â of the system Âxxx = bbb as the product of unitary or triangular
(partial case: diagonal) matrices, Â = Â1Â2...Âk, we can find xxx as follows: First, solve Â1y1y1y1 = bbb. This
is easy, we have yyy1 = Â†

1bbb, if Â1 is unitary; or we find yyy1 by back (Â1 is upper triangular) or by forward
(Â1 is lower triangular, you subsequently find components of yyy1 from the first to the last) substitution.
Then we solve Â2yyy2 = yyy1, Â3yyy3 = yyy2, and so on. Finally, we deal with Âkxxx = yyyk−1. We have

bbb = Â1

(
yyy1 = Â2

(
y2y2y2 = Â3

(
yyy3 = ...Âk−1(yyyk−1 = Âkxxx)

)))
, bbb = Â1Â2...Âkxxx = Âxxx

The commonly used factorizations of Â are:

QR factorization : Â = Q̂R̂, Q̂ is unitary, R̂ is upper triangular

with column pivoting : Â = Q̂R̂P̂, P̂ is [column] permutation matrix

Gaussian elimination, LU factorization : Â = L̂Û , L̂ / Û is lower / upper triangular

with partial pivoting : Â = P̂L̂Û , P̂ is [row] permutation matrix

with complete pivoting : Â = P̂L̂ÛQ̂, Q̂ is [column] permutation matrix

26 This is a different pattern or εmachine-perturbations of R̂ than the one given in [TrBa97, p. 126], because there ri jx j
terms are subtracted from bi in different order (from left to right).

19



Problems and exercises
1. Consider the system Âxxx = bbb, where

Â = Û Σ̂V̂ † =

[
0.8 −0.6
0.6 0.8

][
1 0
0 ε

][
0.6 0.8
−0.8 0.6

]
, bbb =

[
4
3

]
Find xxx analytically. Solve the system numerically for ε = k · 10−14, k = 1,2, ...,10, by 1) computing
Â, then applying the Cramer’s rule; 2) xxx ..= V̂ Σ̂−1Û†bbb. Plot all 20 numerical solutions on one plot.

6 QR factorization
Definition /Theorem 6: Any [real or complex] m× n, m ≥ n, matrix Â has a [reduced] QR fac-

torization Â = Q̂R̂, where m×n matrix Q̂ is unitary, while n×n matrix R̂ is upper triangular.27 If Â is
of full rank, i.e., rank Â = n, then there is only one QR factorization with [strictly] positive diagonal
entries of R̂.

Proof: Matrices Q̂ and R̂ could be produced by the Gram–Schmidt process. In case of full rank,
the columns of Q̂ are defined up to a multiplicative factor with absolute value equal to 1, which is
uniquely set if one requires rii > 0 for all 1≤ i≤ n.

There are two major approaches for obtaining the QR factorization of a matrix (here Â is an m×n
matrix with m ≥ n, on schematic pictures the long/short sides have lengths m /n). One strategy,
employed in Gram–Schmidt process, is to apply “upper triangular” column operations to matrix Â, in
order to make it unitary:

Â În −→

︸ ︷︷ ︸
Q̂k

︸ ︷︷ ︸
R̂k

Q̂k−1 Ûk−1 Û−1
k R̂k−1 −→ Q̂ R̂

Q̂ = ÂÛ1Û2Û3... R̂ = ...Û−1
3 Û−1

2 Û−1
1

Another strategy, employed in Householder reflections and Givens rotations methods, is to act by
unitary matrices V̂1, V̂2, V̂3, ..., on the matrix Â until it becomes upper triangular:

Îm Â −→

︸ ︷︷ ︸
Q̂k

︸ ︷︷ ︸
R̂k

Q̂k−1 V̂ †
k V̂k R̂k−1 −→ Q̂ R̂

Q̂ = V̂ †
1 V̂ †

2 V̂ †
3 ... R̂ = ...V̂3V̂2V̂1Â

27 A full QR factorization is Â = Q̂R̂, where square m×m matrix Q̂ is unitary, and m×n matrix R̂ is upper triangular
(with zero matrix elements below the main diagonal).

20



6.1 Gram–Schmidt process
Algorithms “Classical / Modified Gram–Schmidt”: Input: m×n matrix Â, m≥ n. Output: m×n

unitary matrix Q̂ and n× n upper triangular matrix R̂, such that Â = Q̂R̂, according to the following
pseudo-code:28

classical Gram–Schmidt
for j = 1, 2, ..., n do

qqq j
..=aaa j

for i = 1, 2, ..., j−1 do modification
ri j

..=qqq†
i aaa j −→ ri j

..=qqq†
i qqq j −→

qqq j
..=qqq j− ri jqqqi

r j j
..= ‖qqq j‖2

qqq j
..=qqq j/r j j

return Q̂, R̂

modified Gram–Schmidt29

for i = 1, 2, ..., n do

rii
..= ‖aaai‖2

aaai
..=aaai/rii

for j = i+1, i+2, ..., n do

ri j
..=aaa†

i aaa j
aaa j

..=aaa j− ri jaaai
return Â, R̂

On the right is the pseudo-code for Modified Gram–Schmidt that is equivalent (just operations are
done in different order) to the algorithm after ri j

..=qqq†
i aaa j→ qqq†

i qqq j modification.

Example 6: Let us compute the QR factorization of Â using both classical
(cGS) and modified (mGS) Gram–Schmidt methods. We will assume that ε2�
εmachine � ε in our calculations (i.e., we will drop ε2 terms when added to
something of the order of 1).

Â=


1 1 1
ε 0 0
0 ε 0
0 0 ε


The 1st column is already as good as normalized (‖aaa1‖2

2 = 1+ ε2 ≈ 1), so
r11 = 1 and qqq1 = aaa1. We have r12 = qqq†

1aaa2 = 1, and r22 =
√

2ε, qqq2 =
[

0 −1 1 0
]T
/
√

2 — so
far there is no difference between classical and modified versions of the Gram–Schmidt processes.
Now in classical version we have r13 = qqq†

1aaa3 = aaa†
1aaa3 = 1 and r23 = qqq†

2aaa3 = 0, so we get r33 =
√

2ε,
qqq3 =

[
0 −1 0 1

]T
/
√

2. The cGS QR factorization is

Q̂cGS =


1 0 0
ε −1/

√
2 −1/

√
2

0 1/
√

2 0
0 0 1/

√
2

 , R̂cGS =

 1 1 1
0
√

2ε 0
0 0

√
2ε


Indeed, we have Q̂cGSR̂cGS = Â, but the matrix Q̂cGS is far from unitary: qqqcGS,2 ·qqqcGS,3 = 1/2 6= 0.

In modified version we have r13 = 1, and the column aaa3 is then orthogonalized to qqq1, becoming[
0 −ε 0 ε

]T. Only after that it is attempted to be orthogonalized to qqq2: we have r23 = ε/
√

2, the

28 If for some 1 ≤ i ≤ n the matrix element rii is computed to be 0, then qqqi is arbitrarily chosen from unit vectors
orthogonal to qqq1, qqq2, ..., qqqi−1. E.g., [

4 5.6
3 4.2

]
=

[
0.8 −0.6
0.6 0.8

][
5 7
0 0

]
Here, as aaa2 = 7qqq1, the matrix element r22 ends up to be zero, so qqq2 is chosen to be orthogonal to qqq1.

29 If we do not want to overwrite Â, then we can copy Â at the start of the algorithm and do calculations with the copy.
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subtraction of r23qqq2 brings the 3rd column to
[

0 −ε/2 −ε/2 ε
]T. Finally, we get

Q̂mGS =


1 0 0
ε −1/

√
2 −1/

√
6

0 1/
√

2 −1/
√

6
0 0 2/

√
6

 , R̂mGS =

 1 1 1
0
√

2ε ε/
√

2
0 0

√
3/2ε


The matrix Q̂mGS is much closer to be unitary than Q̂cGS, the dot products qqqmGS,1 ·qqqmGS,2 and qqqmGS,1 ·
qqqmGS,3 are small, of the order of ε, but still non-zero.

6.2 Householder reflections
Consider the following problem: You have a vector xxx∈CCCm. Find a unitary transformation V̂ would

transform xxx to a vector yyy with only non-zero component being the 1st one? (We have |y1|= ‖xxx‖2 then.)
There are many such transformations, and some of them are [Householder] reflections through a

hyperplane orthogonal to vvv = xxx− eiθ‖xxx‖eee1, i.e., V̂ = Îm−2vvvvvv†/‖vvv‖2. We have V̂ † = V̂ , and

V̂ †V̂ = (Îm−2vvvvvv†/‖vvv‖2)(Îm−2vvvvvv†/‖vvv‖2) = Îm−4vvvvvv†/‖vvv‖2 +4vvvvvv†vvvvvv†/‖vvv‖4 = Îm

Thus, V̂ is unitary. It transforms vector xxx to

V̂xxx = xxx−2vvvvvv†xxx/‖vvv‖2 = xxx−2vvv(‖xxx‖2− e−iθ‖xxx‖x1)/‖vvv‖2 =

=
((

2‖xxx‖2− x∗1eiθ‖xxx‖− x1e−iθ‖xxx‖︸ ︷︷ ︸
‖vvv‖2

)
xxx−2

(
xxx− eiθ‖xxx‖eee1︸ ︷︷ ︸

vvv

)(
‖xxx‖2− e−iθ‖xxx‖x1︸ ︷︷ ︸

vvv†xxx

))
/‖vvv‖2

In order for V̂xxx to be proportional to eee1, we need to have e2iθ = x1/x∗1, i.e., θ = argx1 or θ = argx1+π.
Definition 6: A Householder reflection for vector xxx∈CCCm is one of the two unitary transformations

Ĥ±(xxx) ..= Îm−2vvv±vvv†
±/‖vvv±‖2, where vvv± ..=xxx±

(
x1/|x1|

)
‖xxx‖eee1.30 We have Ĥ±(xxx)xxx =∓

(
x1/|x1|

)
‖xxx‖eee1.

Householder QR factorization
for i = 1, 2, ..., n do

xxx ..= Âi:m,i (m− i+1)×1 matrix or a vector
vvvi

..=xxx±
(
x1/|x1|

)
‖xxx‖eee1 + sign is better for numerical stability

vvvi
..=vvvi/‖vvvi‖2 normalize, so we don’t need to divide by ‖vvvi‖2

2 later

Âi:m,i:n
..= Âi:m,i:n−2vvvi(vvv

†
i Âi:m,i:n)

return Â, vvv1, vvv2, ..., vvvn

The vectors vvv1, vvv2, ..., vvvn could be used to reconstruct the matrix Q̂.

Example 6, continued: Let us now compute the QR factorization of Â by Householder reflections.
For the 1st column the Householder reflector H− is formed from the vector vvv− =

[
1 ε 0 0

]T−√
1+ ε2

[
1 0 0 0

]T
=
[

0 ε 0 0
]T. Thus Ĥ−(aaa1) reflection is just changing the sign of the 2nd

component. We have Ĥ−(aaa1)aaa1 =
[

1 −ε 0 0
]T, i.e., not all components below the 1st one become

zero. That is because in our computation the small vector vvv− is resulted in almost cancellation of two
close vectors, so the direction of vvv− suffers from large numerical errors.

30 If x1 = 0, then x1/|x1| could be set to any number with absolute value 1 (e.g., the number 1).
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We have vvv+ =
[

2 ε 0 0
]T, and

Ĥ+(aaa1)Â =

(
Î4−2

vvv+vvv†
+

‖vvv+‖2 = 4

)
Â =


−1 −ε 0 0
−ε 1 0 0

0 0 1 0
0 0 0 1


︸ ︷︷ ︸

V̂1


1 1 1
ε 0 0
0 ε 0
0 0 ε

=


−1 −1 −1

0 −ε −ε

0 ε 0
0 0 ε


︸ ︷︷ ︸

R̂1

Then, for the 2nd column we have xxx =
[
−ε ε 0

]T, vvv+ = ε
[
−(
√

2+1) 1 0
]T, and

V̂2V̂1Â = V̂2R̂1 =


1 0 0 0
0 −1/

√
2 1/

√
2 0

0 1/
√

2 1/
√

2 0
0 0 0 1


︸ ︷︷ ︸

V̂2


−1 −1 −1

0 −ε −ε

0 ε 0
0 0 ε


︸ ︷︷ ︸

R̂1

=


−1 −1 −1

0
√

2ε ε/
√

2
0 0 −ε/

√
2

0 0 ε


︸ ︷︷ ︸

R̂2

Finally, for the 3rd column we have xxx =
[
−ε/
√

2 ε
]T, vvv+ = ε

[
−(
√

3+1)/
√

2 1
]T, and

V̂3V̂2V̂1Â = V̂3R̂2 =


1 0 0 0
0 1 0 0
0 0 −1/

√
3
√

2/3
0 0

√
2/3 1/

√
3


︸ ︷︷ ︸

V̂3


−1 −1 −1

0
√

2ε ε/
√

2
0 0 −ε/

√
2

0 0 ε


︸ ︷︷ ︸

R̂2

=


−1 −1 −1

0
√

2ε ε/
√

2
0 0

√
3/2ε

0 0 0


︸ ︷︷ ︸

R̂

6.3 Givens rotations

[
c s
−s c

][
a
b

]
=

[
r
0

]
where r =

√
a2 +b2, and (c,s) = (a,b)/r. We have c = cosϕ and s = sinϕ, where ϕ = atan2(b,a).

Problems and exercises
1. Compute the QR factorization of Â using both classical and

modified Gram–Schmidt methods, and by Householder reflections.
Assume that ε2� εmachine� ε in your calculations (i.e., drop ε2 terms
when added to something of the order of 1).

Â =

 3 3+4ε 7
4 4−3ε 1
5ε −7ε −12


2. Write programs that compute the QR factorization Â= Q̂R̂ of a matrix by classical and modified

Gram–Schmidt methods, and by Householder reflections (with generation of the matrix Q̂). Test them
(how big is the residual Â− Q̂R̂, how close is Q̂†Q̂ to the identity matrix) on 10× 10 Hilbert matrix
Ĥi j = 1/(i+ j−1).

3. Consider 1001× 5 matrix Â with Ai j = x j−1
i exp(−x2

i /2), where xi = 0.01(i− 501), 1 ≤ i ≤
1001, 1 ≤ j ≤ 5. Find the QR factorization Â = Q̂R̂ by Gram–Schmidt method, and plot the vectors
qqq j/
√

0.01 = 10qqq j, 1≤ j ≤ 5 as functions of xi.31

31 The result is related to Hermite functions [and Hermite polynomials].

23



4. Consider Lie groups of all complex / real invertible n× n matrices GL(n,CCC) /GL(n,RRR). They
contain subgroups of all unitary /orthogonal matrices U(n) /O(n) and all complex / real upper triangu-
lar matrices with strictly positive diagonal entries T+(n,CCC) /T+(n,RRR). Find [real] dimensions of all
the 6 mentioned Lie groups. Calculate dimGL(n,CCC)−dimU(n)−dimT+(n,CCC) and dimGL(n,RRR)−
dimO(n)−dimT+(n,RRR).

7 Gaussian elimination, LU factorization

În Â −→

︸ ︷︷ ︸
L̂ j

︸ ︷︷ ︸
Û j

L̂ j−1 T̂−1
j T̂j Û j−1 −→ L̂ Û

L̂ = T̂−1
1 T̂−1

2 T̂−1
3 ... Û = ...T̂3T̂2T̂1Â

The process is similar to QR factorization by Householder reflections, but instead of unitary trans-
formation V̂k the lower triangular T̂j is employed here. Column by column of Â we make its content
below the main diagonal being 0. Here is an example of a pseudo-code that produces LU factorization:
for j = 1, 2, ..., n−1 do

for i = j+1, j+2, ..., n do application of T̂j

li j
..= ai j/a j j

for k = j, j+1, ..., n do row operation Âi, j:n
..= Âi, j:n− li jÂ j, j:n

aik
..= âik− li ja jk ai j becomes ai j− (li j = ai j/a j j)a j j = 0

return L̂, Â

The matrices T̂j and T̂−1
j look like (empty spaces correspond to zero matrix elements)32

T̂j =


1

1
1

−l j+1, j1
−li j 1
−lnj 1

 , T̂−1
j =


1

1
1

l j+1, j 1
li j 1
lnj 1



T̂j


·
·

a j j
a j+1, j

ai j
anj

=


1

1
1

−l j+1, j1
−li j 1
−lnj 1




·
·

a j j
a j+1, j

ai j
anj

=


·
·
a j j
−(a j+1, j/a j j)a j j +a j+1, j
−(ai j/a j j)a j j +ai j
−(anj/a j j)a j j +anj

=


·
·

a j j
0
0
0


32 The simplest case to self-check the formula for T̂−1

j is
[

1 0
l 1

][
1 0
−l 1

]
=

[
1 ·1+0 · (−l) 1 ·0+0 ·1
l ·1+1 · (−l) l ·0+1 ·1

]
=

[
1 0
0 1

]
.
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L̂ j =


1

l21 1
l j1 l j, j−1 1

l j+1,1 l j+1, j−1 1
li1 li, j−1 1
ln1 ln, j−1 1


︸ ︷︷ ︸

L̂ j−1=T̂−1
1 T̂−1

2 ...T̂−1
j−1


1

1
1

l j+1, j 1
li j 1
lnj 1


︸ ︷︷ ︸

T̂−1
j

=


1

l21 1
l j1 l j, j−1 1

l j+1,1 l j+1, j−1l j+1, j 1
li1 li, j−1 li j 1
ln1 ln, j−1 lnj 1


︸ ︷︷ ︸

L̂ j

Example 7: Consider the matrix Â and its LU factorization:33

Â =


1 0 −1 0
4 1 −5 0
3 −4 0 1
1 −2 4 1

=


1
4 1
3 1
1 1


︸ ︷︷ ︸

L̂1=T̂−1
1

Û1︷ ︸︸ ︷
1
−4 1
−3 1
−1 1


︸ ︷︷ ︸

T̂1


1 0 −1 0
4 1 −5 0
3 −4 0 1
1 −2 4 1

=

=


1
4 1
3 1
1 1




1 0 −1 0
0 1 −1 0
0 −4 3 1
0 −2 5 1

=


1
4 1
3 −4 1
1 −2 1


︸ ︷︷ ︸

L̂2=L̂1T̂−1
2

Û2︷ ︸︸ ︷
1

1
4 1
2 1


︸ ︷︷ ︸

T̂2


1 0 −1 0

1 −1 0
−4 3 1
−2 5 1

=

=


1
4 1
3 −4 1
1 −2 1




1 0 −1 0
1 −1 0
0 −1 1
0 3 1

=


1
4 1
3 −4 1
1 −2 −3 1


︸ ︷︷ ︸

L̂3=L̂2T̂−1
3

Û3︷ ︸︸ ︷
1

1
1
3 1


︸ ︷︷ ︸

T̂3


1 0 −1 0

1 −1 0
−1 1

3 1

=

=


1
4 1
3 −4 1
1 −2 −3 1




1 0 −1 0
1 −1 0
−1 1

0 4

=


1
4 1
3 −4 1
1 −2 −3 1


︸ ︷︷ ︸

L̂


1 0 −1 0

1 −1 0
−1 1

4


︸ ︷︷ ︸

Û

= L̂Û

33 The matrix Â is chosen in such a way that the matrices L̂ and Û end up being integer. Here κ(Â) ≈ 129.1, κ(L̂) ≈
414.4, and κ(Û)≈ 8.18.
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LU factorization with partial pivoting:34

Â =


1 0 −1 0
4 1 −5 0
3 −4 0 1
1 −2 4 1

=


1

1
1

1


︸ ︷︷ ︸

P̂1


4 1 −5 0
1 0 −1 0
3 −4 0 1
1 −2 4 1

=

=


1

1
1

1


︸ ︷︷ ︸

P̂1


1
1
4 1
3
4 1
1
4 1


︸ ︷︷ ︸

L̂1=T̂−1
1


4 1 −5 0
0 −1

4
1
4 0

0 −19
4

15
4 1

0 −9
4

21
4 1


︸ ︷︷ ︸

Û1

=

=


1

1
1

1


︸ ︷︷ ︸

P̂1


1
1
4 1
3
4 1
1
4 1


︸ ︷︷ ︸

L̂1=T̂−1
1


1

1
1

1




4 1 −5 0
−19

4
15
4 1

−1
4

1
4 0

−9
4

21
4 1

=

=


1

1
1

1


︸ ︷︷ ︸

P̂2


1
3
4 1
1
4 1
1
4 1




1
1
1

19 1
9

19 1


︸ ︷︷ ︸

T̂−1
2


4 1 −5 0
−19

4
15
4 1

0 1
19 −

1
19

0 66
19

10
19


︸ ︷︷ ︸

Û2

=

=


1

1
1

1




1
3
4 1
1
4

1
19 1

1
4

9
19 1


︸ ︷︷ ︸

L̂2


1

1
1

1




4 1 −5 0
−19

4
15
4 1
66
19

10
19

1
19 −

1
19

=

=


1

1
1

1


︸ ︷︷ ︸

P̂3


1
3
4 1
1
4

9
19 1

1
4

1
19 1




1
1

1
1

66 1


︸ ︷︷ ︸

T̂−1
3


4 1 −5 0
−19

4
15
4 1
66
19

10
19

0 − 2
33

=

=


1

1
1

1


︸ ︷︷ ︸

P̂


1
3
4 1
1
4

9
19 1

1
4

1
19

1
66 1


︸ ︷︷ ︸

L̂


4 1 −5 0
−19

4
15
4 1
66
19

10
19
− 2

33


︸ ︷︷ ︸

Û

34 We get κ(L̂)≈ 2.46 and κ(Û)≈ 144.8.
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LU factorization with complete pivoting:35

Â =


1 0 −1 0
4 1 −5 0
3 −4 0 1
1 −2 4 1

=


1

1
1

1


︸ ︷︷ ︸

P̂1


−5 1 4 0
−1 0 1 0

0 −4 3 1
4 −2 1 1




1
1

1
1


︸ ︷︷ ︸

Q̂1

=

=


1

1
1

1


︸ ︷︷ ︸

P̂1


1
1
5 1
0 1
−4

5 1


︸ ︷︷ ︸

L̂1=T̂−1
1


−5 1 4 0

0 −1
5

1
5 0

0 −4 3 1
0 −6

5
21
5 1


︸ ︷︷ ︸

Û1


1

1
1

1


︸ ︷︷ ︸

Q̂1

=

=


1

1
1

1


︸ ︷︷ ︸

P̂1


1
1
5 1
0 1
−4

5 1


︸ ︷︷ ︸

L̂1=T̂−1
1


1

1
1

1



−5 4 1 0

21
5 −

6
5 1

3 −4 1
1
5 −

1
5 0




1
1

1
1




1
1

1
1


︸ ︷︷ ︸

Q̂1

=

=


1

1
1

1


︸ ︷︷ ︸

P̂2


1
−4

5 1
0 1
1
5 1



−5 4 1 0

21
5 −

6
5 1

3 −4 1
1
5 −

1
5 0




1
1

1
1


︸ ︷︷ ︸

Q̂2

=

=


1

1
1

1


︸ ︷︷ ︸

P̂2


1
−4

5 1
0 5

7 1
1
5

1
21 1


︸ ︷︷ ︸

L̂2


−5 4 1 0

21
5 −6

5 1
0 −22

7
2
7

0 −1
7 −

1
21


︸ ︷︷ ︸

Û2


1

1
1

1


︸ ︷︷ ︸

Q̂2

=

=


1

1
1

1


︸ ︷︷ ︸

P̂=P̂2


1
−4

5 1
0 5

7 1
1
5

1
21

1
22 1


︸ ︷︷ ︸

L̂


−5 4 1 0

21
5 −6

5 1
−22

7
2
7

0 − 2
33


︸ ︷︷ ︸

Û


1

1
1

1


︸ ︷︷ ︸

Q̂=Q̂2

=

Problems and exercises
1. Write a program that solves the square system Âxxx = bbb by Gaussian elimination with partial

pivoting. Test it on 10× 10 Hilbert matrix Ĥi j = 1/(i+ j− 1): First compute the r.h.s. vector bbb =

Ĥ
[

1 2 3 4 5 6 7 8 9 10
]T, and then solve the system Ĥxxx = bbb.

35 We get κ(L̂)≈ 2.92 and κ(Û)≈ 121.2.
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8 Eigenvalues
Algorithm det(λÎ− Â) = 0: Calculate the characteristic polynomial of the matrix, then find its

roots. This is an unstable algorithm.
Algorithm “power iteration”: Choose arbitrarily a vector xxx0, then calculate xxxn

..= Âxxxn−1 for n = 1,
2, ... Renormalize the vector xxxn when needed. This method finds an eigenvector for the eigenvalue
with the largest absolute value.

Exapmpe 8: Consider the following matrix:

Â =


8 7 −8 −7 −1
6 7 6 −3 3
−8 −8 8 8 0
−2 −2 −2 6 2
−6 −6 −6 6 2

=


1 1 0 1 −1
0 0 1 0 1
−1 −1 0 0 0

0 1 1 1 0
0 1 0 −1 0


︸ ︷︷ ︸

V̂


16

8
4

2
1


︸ ︷︷ ︸

D̂


1 1 0 −1 0
−1 −1 −1 1 0

2 2 2 −1 1
−1 −1 −1 1 −1
−2 −1 −2 1 −1


︸ ︷︷ ︸

V̂−1

The columns of V̂ are the eigenvectors of Â: Âvvv j = 25− jvvv j, j = 1, 2, 3, 4, 5. Let us choose xxx0
..=vvv1 +

216vvv2 + 228vvv3 + 236vvv2 + 240vvv5, normalize it xxx0
..= xxx0/‖xxx0‖2, and then do power iterations xxxn = Âxxxn−1,

xxxn
..=xxxn/‖xxxn‖2 for n = 1, 2, 3, ..., 50:

1

10−4

10−8

10−12

10−16

5

The graph shows the smallest angle to one the eigenvalues vvv1, vvv2, vvv3, vvv4, vvv5. Here the vector xxx0 is
chosen in such a way, that each eigenvector is dominant at some iteration. Eventually the iterations
converge to vvv1, the eigenvector with the largest in absolute value eigenvalue.

Algorithm “inverse iteration”: Choose a number µ. Do power iteration for (Â− µÎ)−1. This
method finds an eigenvector for the eigenvalue closest to µ.

Definition 8.1: Let Â be an n× n matrix. The Rayleigh quotient of a vector xxx is the R(Â,xxx) ..=(
xxx†Âxxx

)
/(xxx†xxx). If xxx is an eigenvector of the matrix Â with eigenvalue λ, then R(Â,xxx) = λ.

Algorithm “Rayleigh quotient iteration”: Choose arbitrarily a vector xxx0, then calculate xxxn
..=
(
Â−

R(Â,xxxn−1)Î
)−1xxxn−1 for n = 1, 2, ... Renormalize the vector xxxn when needed.

Definition/Theorem 8.2: Any square n× n matrix Â has a Schur decomposition Â = Q̂T̂Q̂†,
where matrix Q̂ is unitary, while matrix T̂ is upper triangular. This is a similarity transformation, and
diagonal elements of T̂ are the eigenvalues of Â.
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Definition 8.3: A Hessenberg decomposition of a square n× n matrix Â is Â = Q̂ĤQ̂†, where
matrix Q̂ is unitary, and matrix Ĥ is such that Hi j = 0 if i > j+1. This is a similarity transformation,
and the eigenvalues of Â and of Ĥ are the same.

The Hessenberg form of a matrix Â can be ontained with Householder reflections O(n3) opera-
tions. The algorithm is simialar to QR factorization, but one leaves one more component non-zero.
This allows the zeros of the formed matrix being not destroyed by multiplying by V̂ † from the right.

Problems and exercises
1. Consider the 100× 100 matrix Â with aii = −2, and ai+1,i = ai−1,i = 1 for all i = 1,2, ...100.

The values 0 /101 of the index are identified with 100/1. The matrix is cyclic shift invariant (ai j =
ai+k, j+k), so discrete Fourier transform diagonalizes it. Consider xxx0 = eee50. (a) Do power iterations
xxxn

..= Âxxxn−1, xxxn
..=xxxn/‖xxxn‖2. Plot xxx100, xxx1000, and xxx10000. Guess the maximal in absolute value eigenvalue

λmax and the eigenvector xxxmax corresponding to it. (b) Let µ = −4.001. Plot xxx1, xxx2, xxx3, and xxx4 for
the inverse power iteration xxxn

..= (Â− µÎ)−1xxxn−1, xxxn
..= xxxn/‖xxxn‖2 (xxxn is found as the solution of the

system (Â−µÎ)xxxn = xxxn−1). (c) Do Rayleigh quotient iterations µ0 =−4.001, xxxn
..= (Â−µn−1Î)−1xxxn−1,

xxxn
..=xxxn/‖xxxn‖2, µn

..= R(Â,xxxn) = xxx†
n Âxxxn up to n = 5. Print µn and ‖xxxn±xxxn−1‖2, n = 1, 2, ..., 5.

2. Consider the matrix Â on the right. Its eigen-
values are complex. (a) Do 100 and 101 QR itera-
tions Q̂R̂ ..= Â, Â ..= R̂Q̂. Can you easily extract eigen-
values of Â, e.g., from Â1:2,1:2? (b) Do 100 shifted
QR iterations Q̂R̂ ..= Â− Î4, Â ..= R̂Q̂+ Î4. Calculate

Â =


30000 −29999 −29999 30000
30001 −30000 −30000 30001
9999 −10000 30000 −29999

10000 −10001 30001 −30000


the eigenvalues of the upper left Â1:2,1:2 and lower right Â3:4,3:4 2× 2 corners of the resulted matrix,
compare them with the eigenvalues of Â. (c) Do 100 shifted QR iterations Q̂R̂ ..= Â−µÎ4, Â ..= R̂Q̂+µÎ4
with µ = (1+ i)/2. Is Â close to being an upper triangular?

Part III

Systems of nonlinear equations
Consider you are to solve the equation f (x) = 0, where f is the continuous real function of one

real variable. This problem could be solved by simple but powerful bisection method. The idea is
the following: If you find such xleft < xright that f (xleft) and f (xright) are of different sign, then there
is such x∗, xleft < x∗ < xright, that f (x∗) = 0. Try x = (xleft + xright)/2. If f (x) = 0, then you solved
the equation. Otherwise check which f (xleft) or f (xright) is of different sign with f (x) and narrow the
interval [inside which at least one solution lies in] (xleft,xright) to either (xleft,x) or (x,xright). We can
systematically reduce, each time by factor or 2, the width of the interval containing a solution, until
the width of the interval [or uncertainty in solution] is small enough.

Here is how the solution of x = cosx equation inside the interval [0,1] is found (we define f (x) =
x− cos(x), we have f (0) =−1 < 0 and f (1) = 1− cos(1)> 0):

[...]/teaching/2019-4/math_575a/notes/Python$ cat x_eq_cos_x.py
from math import cos
xl, xr = 0., 1.
print(’{0:.8e} {1:.8e}’.format(xl, xr))
while (xr - xl > 1.e-6):
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xm = 0.5 * (xl + xr)
if (cos(xm) > xm):

print(’ {0:.15e} {1:.8e}’.format(xm, xr))
xl = xm

else:
print(’{0:.8e} {1:.15e}’.format(xl, xm))
xr = xm

[...]/teaching/2019-4/math_575a/notes/Python$ python3 x_eq_cos_x.py
0.00000000e+00 1.00000000e+00

5.000000000000000e-01 1.00000000e+00
5.00000000e-01 7.500000000000000e-01

6.250000000000000e-01 7.50000000e-01
6.875000000000000e-01 7.50000000e-01
7.187500000000000e-01 7.50000000e-01
7.343750000000000e-01 7.50000000e-01

7.34375000e-01 7.421875000000000e-01
7.382812500000000e-01 7.42187500e-01

7.38281250e-01 7.402343750000000e-01
7.38281250e-01 7.392578125000000e-01

7.387695312500000e-01 7.39257812e-01
7.390136718750000e-01 7.39257812e-01

7.39013672e-01 7.391357421875000e-01
7.390747070312500e-01 7.39135742e-01

7.39074707e-01 7.391052246093750e-01
7.39074707e-01 7.390899658203125e-01

7.390823364257812e-01 7.39089966e-01
7.39082336e-01 7.390861511230469e-01

7.390842437744141e-01 7.39086151e-01
7.39084244e-01 7.390851974487305e-01
[...]/teaching/2019-4/math_575a/notes/Python$

9 Functional iteration
Quite often a general system of non-linear equations arises (or can be rewritten) in the form

xxx = fff (xxx), where fff (·) is a n-component vector function, with an n-component vector as an argument.
A common method of solving such a system is by iterations xxx(n+1) ..= fff

(
xxx(n)
)

starting from some
initial guess xxx(0). If such iterations do converge, then they converge to a solution. Here is how the
equation x = cos(x) is solved by functional iteration, starting from initial guess x(0) = 0:

[...]/teaching/2019-4/math_575a/notes/C$ cat x_eq_cos_x.c
#include <stdio.h>
#include <math.h>
int main() { int i; double x;

for (x = 0., i = 0; i <= 34; i++, x = cos(x)) printf("%8.6f ", x);
printf("\n"); return 0; }

[...]/teaching/2019-4/math_575a/notes/C$ cc x_eq_cos_x.c -lm
[...]/teaching/2019-4/math_575a/notes/C$ ./a.out
0.000000 1.000000 0.540302 0.857553 0.654290 0.793480 0.701369 0.763960 0.722102
0.750418 0.731404 0.744237 0.735605 0.741425 0.737507 0.740147 0.738369 0.73956
7 0.738760 0.739304 0.738938 0.739184 0.739018 0.739130 0.739055 0.739106 0.7390
71 0.739094 0.739079 0.739089 0.739082 0.739087 0.739084 0.739086 0.739085
[...]/teaching/2019-4/math_575a/notes/C$
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octave:1> format long
octave:2> options = optimset(’TolX’, 1.e-13, ’TolFun’, 1.e-13);
octave:3> x = fsolve(@(x) (x - cos(x)), 0., options)
x = 7.390851332151714e-01
octave:4> y = cos(x)
y = 7.390851332151533e-01

The stability of the functional iterations at the solution xxx∗ = fff (xxx∗) could be obtained from the
linearization of fff at xxx = xxx∗.

10 Newton–Raphson method
Let us try to solve fff (xxx) = 000 system of equations. It is complicated as the vector function fff

is non-linear. Consider we have a guess for a solution, xxx0. We can approximate fff by its tangent
line approximation: fff (xxx = xxx0 +δδδ) ≈ fff (xxx0)+ (∇ fff )(xxx0) ·δδδ. The truncation of the Taylor series in δδδ

is motivated by our expectation that δδδ is small. Our system of equations becomes fff (xxx) ≈ fff (xxx0)+
(∇ fff )(xxx0) ·δδδ = 000, which is a system of linear equations for the components of vector δδδ. We have

xxx = xxx0 +δδδ≈ xxx0 +
(
solution of the (∇ fff )(xxx0) ·δδδ =− fff (xxx0) system

)
= xxx0−

(
(∇ fff )(xxx0)

)−1 fff (xxx0)

The method of solving the system of equations fff (xxx)=000 based on iterations xxxn+1 =xxxn−
(
(∇ fff )(xxxn)

)−1 fff (xxxn)
is called the Newton–Raphson method.

There is no guarantee that these iterations are going to converge, but when they do they con-
verge very fast: fff (xxxn+1) = fff

(
xxxn−

(
(∇ fff )(xxxn)

)−1 fff (xxxn)
)
= fff (xxxn)− (∇ fff )(xxxn) ·

(
(∇ fff )(xxxn)

)−1 fff (xxxn)+
1
2(∇∇ fff )(xxxn) · (

(
(∇ fff )(xxxn)

)−1 fff (xxxn))
2 ∝ ( fff (xxxn))

2. The “error” in the next step is the square of the error
in previous step.

Example 10.1: Let us compute
√

2. We may construct a function f (x) such that f (
√

2) = 0,
and then find the root by the Newton–Raphson method. Let f (x) ..= x2− 2. Then f ′(x) = 2x, and
the update rule reads as xn+1 = xn− (x2

n− 2)/2xn = xn/2+ 1/xn. If we start from x0 = 1 or x0 = 2,
we have x1 = 1/2+ 1/1 = 2/2+ 1/2 = 3/2. Then x2 = x1/2+ 1/x1 = 3/4+ 2/3 = (9+ 8)/12 =
17/12= 1.41666... (notice that 172 = 289≈ 288= 2 ·122). We have x3 = 17/24+12/17=(172+24 ·
12)/24 ·17 = 577/408 = 1.41421568... (notice that 5772 = 332929≈ 332928 = 2 ·4082). Next x4 =
665857/470832 = 1.41421356237468..., while

√
2 = 1.41421356237309... The Newton–Raphson

iterations very quickly converge to
√

2, at each iteration the number of correct significant digits is
doubled.

Example 10.2: Consider the system y = x2, xy = 1. We can write it as fff (x,y) by setting f1(x,y) =
y− x2 and f2(x,y) = xy−1. The matrix ∇ fff and the iterations look like[

∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

]
=

[
−2x 1

y x

]
[

x
y

]
7→
[

x
y

]
−
[
−2x 1

y x

]−1[ y− x2

xy−1

]
=

[
y− x2

xy−1

]
=

[
x
y

]
+

1
2x2 + y

[
x −1
−y −2x

][
y− x2

xy−1

]
=

=
1

2x2 + y

[
1+ xy+ x3

x(2+ xy)

]
=

[
1
1

]
+

α

3+4α+β+2α2

[
β+α+α2

2β−α+αβ

]
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where x = 1+α, y = 1+ β. We have x = y = 1 being a solution, with the deviation from it being
about squared in magnitude with each iteration:
octave:1> format long
octave:2> f = @(x) ([1 + x(1) * x(2) + (x(1))ˆ3, x(1) * (2 + x(1) * x(2))] / (2

* (x(1))ˆ2 + x(2)));
octave:3> x0 = [2, 0];
octave:4> [x0 ; f(x0); f(f(x0)); f(f(f(x0))); f(f(f(f(x0)))); f(f(f(f(f(x0)))))]
ans =

2.000000000000000e+00 0.000000000000000e+00
1.125000000000000e+00 5.000000000000000e-01
9.851804123711341e-01 9.510309278350515e-01
1.000325727687672e+00 1.000422180897834e+00
1.000000081169684e+00 1.000000056293719e+00
1.000000000000004e+00 1.000000000000001e+00

Problems and exercises
1. Consider the system y = x2, xy = 1 (Example 10.2). Find all of its solutions analytically. Do

several Newton-Raphson iterations starting from x0 =−1+ i, y0 = 0. Do you converge to a solution,
and if yes, to which one?

2. Consider the [transcendental] equation ex = kx. When k > e, there are two solutions, xsmall(k)<
1 and x(k)> 1. For e2≤ k≤ e10 log-log plot the solution x(k) found by (a) bisection method, (b) func-
tional iteration (you need to rewrite the equation in x = F(x) form with iterations being converging),
and (c) Newton–Raphson method.

Part IV

Numerical ODEs
Suggested reading: [AsPe98].

11 Interpolation, basic integration schemes

Consider you are to compute I =
∫ b

a dx f (x). Here we think of generic (i.e., not specified) function
f (x). We would like to 1) compute I accurately enough, and 2) spend less of an effort (which we will
measure in at how many points the function f (·) is computed).36 In a general recipe, where f (x) is
not specified, [due to linearity of integration] an algorithm of computing I

Example 11: Let us compute
∫ π/2

0 dx sin(x). We will do it in several ways:

(a) Analytical:
∫ π/2

0 dx sin(x) =−cos(x)
∣∣π/2
0 = cos(0)− cos(π/2) = 1. This is the exact answer.

(b) Taylor series:
∫

π/2

0
dx sin(x) =

∫
π/2

0
dx

∞

∑
n=0

(−1)nx2n+1

(2n+1)!
=

∞

∑
n=0

(−1)n(π/2)2n+2

(2n+2)!
. Let us calculate

this series numerically:
36 It is not necessary that the integral is estimated through values of f (·) at some points. Possible situations could be

using an analytical formula for I, or presenting f as a linear combination of functions
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[...]/teaching/2019-4/math_575a/notes/Python$ cat int_sin_b.py
from math import pi
taylor, sum, n, pi2f = 1., 0., 0, -1.
while taylor != sum:

pi2f = -pi2f * (pi / 2.)**2 / ((2. * n + 1.) * 2. * (n + 1.))
taylor, sum, n = sum, sum + pi2f, n + 1

print(’series = {0:.15e}, {1:d} terms are summed’.format(taylor, n))
[...]/teaching/2019-4/math_575a/notes/Python$ python3 int_sin_b.py
series = 9.999999999999999e-01, 11 terms are summed
[...]/teaching/2019-4/math_575a/notes/Python$

(c) Midpoint rule: for large N we have
∫

π/2

0
dx sin(x)≈ π/2

N︸︷︷︸
∆x

N−1

∑
i=0

sin
(

π(2i+1)
4N︸ ︷︷ ︸
xi

)
:

[...]/teaching/2019-4/math_575a/notes/Python$ cat int_sin_c.py
from math import pi, sin
for N in [10, 100, 1000]:

S = sum(map(sin, [(pi / 2.) * (i + 0.5) / N for i in range(0, N)]))
print(’N = {0:4d}, midpoint = {1:.15e}’.format(N, (pi / 2.) * S / N))

[...]/teaching/2019-4/math_575a/notes/Python$ python3 int_sin_c.py
N = 10, midpoint = 1.001028824142709e+00
N = 100, midpoint = 1.000010280911905e+00
N = 1000, midpoint = 1.000000102808387e+00
[...]/teaching/2019-4/math_575a/notes/Python$

(d) As in (c), but Simpson’s rule is used: here N is necessarily even, ∆x ..= (b−a)/N, x j
..= a+ j∆x (so

x0 = a and xN = b), and
∫ b

a
dx f (x)≈ ∆x

3

N/2−1

∑
j=0

(
f (x j)+4 f (x j+1)+ f (x j+2)

)
= ∆x

(
f (a)+4 f (x1)+

2 f (x2)+4 f (x3)+2 f (x4)+ ...+2 f (xN−2)+4 f (xN−1)+ f (b)
)
/3:

[...]/teaching/2019-4/math_575a/notes/Python$ cat int_sin_d.py
from math import pi, sin
for N in [10, 100, 1000]:

S, w = sin(0.) + sin(pi / 2.), 4.
for i in range(1, N):

S, w = S + w * sin((pi / 2.) * i / N), 6. - w
print(’N = {0:4d}, Simpson = {1:.15e}’.format(N, pi * S / (6. * N)))

[...]/teaching/2019-4/math_575a/notes/Python$ python3 int_sin_d.py
N = 10, Simpson = 1.000003392220900e+00
N = 100, Simpson = 1.000000000338236e+00
N = 1000, Simpson = 1.000000000000033e+00
[...]/teaching/2019-4/math_575a/notes/Python$

37

Problems and exercises
37 Chebfun — computational software using Chebyshev nodes.
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1. Consider the integral 1 =
1

e−1

1∫
0

dx exp(x). Compute it by left-, right-sum, trapezoidal, mid-

point, and Simpson’s rules. Log-log plot errors vs. ∆x, find the order of accuracy of these numerical
integration schemes.

2. (a) Compute the integral
1∫

0

dx
(
1− x2)2 using trapezoidal rule. (b) Compute the integral

1∫
0

dx
1+ x2 using Simpson’s rule. In both (a) and (b) log-log plot errors vs. ∆x, speculate about the

order of accuracy.

3. Compute
1∫

0

dx√
x+ x3

up to 10 significant digits.

12 Euler method, stability
The solution of the system of ODEs dxxx/dt = fff

(
t,xxx(t)

)
can be written as38

xxx(tend) = xxx(tstart)+

tend∫
tstart

dt fff
(
t,xxx(t)

)︸ ︷︷ ︸
dxxx/dt

We assume xxx(tstart) to be known, and our task is to find xxx(tend) or the whole trajectory xxx(t). We divide
the interval of integration [tstart, tend] into N subintervals

tstart = t0 < t1 < t2 < ... < tN−1 < tN = tend, nth step size hn = tn−1− tn

and approximate the integral of the r.h.s. fff over [tn−1, tn] using some integration scheme. We will
denote xxx(tn) as xxxn. Estimating the integral of fff over [t0, t1] would give us the difference between xxx1
and xxx0, and (as xxx0 is known) that will give us the value of xxx1.39 Next, from the esimation of the integral
of fff over [t1, t2] we will find xxx2. This way, one by one we find all the values xxxn, 1≤ n≤ N.

If we estimate the integral of fff over subinterval [tn−1, tn] using left sums rule (with just one subdi-
vision) we get the [forward] Euler method:

xxx(t +h) = xxx(t)+h fff
(
t,xxx(t)

)
From the known xxx(tstart) = xxx0 we calculate xxx1 = xxx0 + h1 fff (t0,xxx0). Note that this is a straightforward
calculation, we get xxx1 right away. Such numerical schemes for solving ODEs are called explicit.

38 Such a rewrite is not very much useful by itself, as the function xxx(t) inside the integrand fff (·, ·) is unknown.
39 Estimation of the integral may depend on the value of xxx1, then finding xxx1 is not straightforward.
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13 Runge–Kutta methods
A general Runge–Kutta method is typically defined by writing down its Butcher tableau:

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s

...
...

... . . . ...
cs as1 as2 · · · ass

b1 b2 · · · bs

kkki = h fff
(

t + cj h, xxx(t)+
s

∑
j=1

ai j kkk j

)
xxx(t +h) ..=xxx(t)+

s

∑
j=1

b jkkk j

The number s is called a number of stages. The quantity xxx(t) +∑
s
j=1 ai j kkk j could be thought as a

preliminary estimation of xxx(t +cih). The method is explicit if ai j = 0 whenever i≤ j. In this case the
preliminary data kkki, i = 1, 2, ..., s can be calculated in staightforward computation.

For a method to be at least 1st order of accuracy, we need to have b1 +b2 + ...+bs = 1.
It is physically reasonable to have ci = ∑

s
j=1 ai j, as it implies kkki = h fff

(
t +cih,xxx(t +cih)

)
+O(h3).

Then an explicit method necessarily would have c1 = 0, and kkk1 = h fff
(
t,xxx(t)

)
, i.e., the 1st stage in an

explicit Runge–Kutta method is always a forward Euler step.
A celebrated classical Runge–Kutta method of the 4th order of accuracy (RK4) is given by

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

1
3

1
3

1
6

kkk1
..= h fff

(
t, xxx(t)

)
kkk2

..= h fff
(
t + h

2 , xxx(t)+ 1
2kkk1
)

kkk3
..= h fff

(
t + h

2 , xxx(t)+ 1
2kkk2
)

kkk4
..= h fff

(
t +h, xxx(t)+kkk3

)
xxx(t +h) ..=xxx(t)+ 1

6

(
kkk1 +2kkk2 +2kkk3 +kkk4

)
It is an explicit method with 4 stages. Let us demonstrate that it is indeed of the 4th order of accuracy.
It will be convenient to use the following notation: FFF(m,n)

j1 j2... jn
..=hm+1 ∂m

∂tm
∂n

∂X j1∂X j2 ...∂X jn
fff
(
t,XXX
)∣∣

XXX=xxx(t). We

will write FFF instead of FFF(0,0) = hfff
(
t,xxx(t)

)
. For the dynamics dxxx/dt = fff

(
t,xxx(t)

)
, we would have (this
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is general, and not about RK4)

∆xxx = xxx(t +h)−xxx(t) =
(

h d
dt +

h2

2
d2

dt2 +
h3

6
d3

dt3 +
h4

24
d4

dt4

)
xxx(t)+O(h5) =FFF +

+
(

h2

2
d
dt +

h3

6
d2

dt2 +
h4

24
d3

dt3

)
fff
(
t,xxx(t)

)
+ ...=FFF + 1

2FFF(1,0)+ 1
2FFF(0,1)

j Fj +

+
(

h3

6
d
dt +

h4

24
d2

dt2

)(
∂ fff (t,XXX)

∂t + ∂ fff (t,XXX)
∂X j

f j
(
t,XXX
))∣∣∣

XXX=xxx(t)
=FFF + 1

2FFF(1,0)+ 1
2FFF(0,1)

j Fj +

+ 1
6FFF(2,0)+ 1

6FFF(1,1)
j Fj︸ ︷︷ ︸

h3
6

d
dt

∂

∂t fff (t,XXX)
∣∣

XXX=xxx(t)

+ 1
6FFF(1,1)

j Fj +
1
6FFF(0,2)

jk FjFk +
1
6FFF(0,1)

j F(1,0)
j + 1

6FFF(0,1)
j F(0,1)

j;k Fk︸ ︷︷ ︸
h3
6

d
dt f j(t,XXX) ∂

∂X j
fff (t,XXX)

∣∣
XXX=xxx(t)

+

+ h4

24
d
dt

[
∂2 fff (t,XXX)

∂t2 +2∂2 fff (t,XXX)
∂t∂X j

f j
(
t,XXX
)
+ ∂2 fff (t,XXX)

∂X j∂Xk
f j
(
t,XXX
)

fk
(
t,XXX
)
+ ∂ fff (t,XXX)

∂X j

∂ f j(t,XXX)
∂t +

+ ∂ fff (t,XXX)
∂X j

∂ f j(t,XXX)
∂Xk

fk
(
t,XXX
)]∣∣∣

XXX=xxx(t)
=FFF + 1

2FFF(1,0)+ 1
2FFF(0,1)

j Fj +
1
6FFF(2,0)+ 1

3FFF(1,1)
j Fj +

1
6FFF(0,2)

jk FjFk +

+ 1
6FFF(0,1)

j F(1,0)
j + 1

6FFF(0,1)
j F(0,1)

j;k Fk +
1

24FFF(3,0)
1 + 1

8FFF(2,1)
j Fj 12 + 1

8FFF(1,2)
jk FjFk 23 +

+ 1
24FFF(0,3)

jkl FjFkFl 3 + 1
8FFF(1,1)

j F(1,0)
j 24 + 1

8FFF(1,1)
j F(0,1)

j;k Fk 25 + 1
8FFF(0,2)

jk F(1,0)
j Fk 34 +

+ 1
8FFF(0,2)

jk F(0,1)
j;l FkFl 35 + 1

24FFF(0,1)
j F(2,0)

j 4 + 1
12FFF(0,1)

j F(1,1)
j;k Fk 45 + 1

24FFF(0,1)
j F(0,2)

j;kl FkFl 5 +

+ 1
24FFF(0,1)

j F(0,1)
j;k F(1,0)

k 5 + 1
24FFF(0,1)

j F(0,1)
j;k F(0,1)

k;l Fl 5

The digits in boxes indicate which of the 5 terms in big square brackets do contribute to the adjacent
part of the expression.
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For the classical Runge–Kutta method we have kkk1 =FFF , and

kkk2 = hfff
(
t + h

2 ,xxx(t)+
1
2FFF
)
=FFF + 1

2FFF(1,0)+ 1
2FFF(0,1)

j Fj︸ ︷︷ ︸
O(h2) terms

+ 1
8FFF(2,0)+ 1

4FFF(1,1)
j Fj +

1
8FFF(0,2)

jk FjFk︸ ︷︷ ︸
O(h3) terms

+

+ 1
48FFF(3,0)+ 1

16FFF(2,1)
j Fj +

1
16FFF(1,2)

jk FjFk +
1
48FFF(0,3)

jkl FjFkFl︸ ︷︷ ︸
O(h4) terms

+O(h5)

kkk3 = hfff
(
t + h

2 ,xxx(t)+
1
2kkk2
)
=FFF + 1

2FFF(1,0)+ 1
2FFF(0,1)

j k2 j +
1
8FFF(2,0)+ 1

4FFF(1,1)
j k2 j +

1
8FFF(0,2)

jk k2 jk2k +

+ 1
48FFF(3,0)+ 1

16FFF(2,1)
j k2 j +

1
16FFF(1,2)

jk k2 jk2k +
1

48FFF(0,3)
jkl k2 jk2kk2l +O(h5) =FFF + 1

2FFF(1,0)+

+ 1
2FFF(0,1)

j

(
Fj +

1
2F(1,0)

j + 1
2F(0,1)

j;k Fk +
1
8F(2,0)

j + 1
4F(1,1)

j;k Fk +
1
8F(0,2)

j;kl FkFl +O(h4)
)
+ 1

8FFF(2,0)+

+ 1
4FFF(1,1)

j

(
Fj +

1
2F(1,0)

j + 1
2F(0,1)

j;k Fk +O(h3)
)
+ 1

8FFF(0,2)
jk

(
FjFk +

1
2F(1,0)

j Fk +
1
2F(0,1)

j;l FlFk +

+ 1
2FjF

(1,0)
k + 1

2FjF
(0,1)
k;l Fl + ...

)
+ 1

48FFF(3,0)+ 1
16FFF(2,1)

j F2 j +
1
16FFF(1,2)

jk FjFk +
1

48FFF(0,3)
jkl FjFkFl + ...

kkk4 = hfff
(
t +h,xxx(t)+kkk3

)
=FFF +FFF(1,0)+FFF(0,1)

j k3 j +
1
2FFF(2,0)+FFF(1,1)

j k3 j +
1
2FFF(0,2)

jk k3 jk3k +

+ 1
6FFF(3,0)+ 1

2FFF(2,1)
j k3 j +

1
2FFF(1,2)

jk k3 jk3k +
1
6FFF(0,3)

jkl k3 jk3kk3l + ...=FFF +FFF(1,0)+

+FFF(0,1)
j

(
Fj +

1
2F(1,0)

j + 1
2F(0,1)

j;k

(
Fk +

1
2F(1,0)

k + 1
2F(0,1)

k;l Fl
)
+ 1

8F(2,0)
j + 1

4F(1,1)
j;k Fk +

1
8F(0,2)

j;kl FkFl

)
+

+ 1
2FFF(2,0)+FFF(1,1)

j

(
Fj +

1
2F(1,0)

j + 1
2F(0,1)

j;k Fk

)
+ 1

2FFF(0,2)
jk

(
FjFk +

1
2F(1,0)

j Fk +
1
2F(0,1)

j;l FlFk +

+ 1
2FjF

(1,0)
k + 1

2FjF
(0,1)
k;l Fl

)
+ 1

6FFF(3,0)+ 1
2FFF(2,1)

j Fj +
1
2FFF(1,2)

jk FjFk +
1
6FFF(0,3)

jkl FjFkFl + ...

FF F FF F
(1
,0
)

FF F
(0
,1
)

j
F

j

FF F
(2
,0
)

FF F
(1
,1
)

j
F

j

FF F
(0
,2
)

jk
F

jF
k

FF F
(0
,1
)

j
F
(1
,0
)

j

FF F
(0
,1
)

j
F
(0
,1
)

j;k
F k

FF F
(3
,0
)

FF F
(2
,1
)

j
F

j

FF F
(1
,2
)

jk
F

jF
k

FF F
(0
,3
)

jk
l

F
jF

kF
l

FF F
(1
,1
)

j
F
(1
,0
)

j

FF F
(1
,1
)

j
F
(0
,1
)

j;k
F k

FF F
(0
,2
)

jk
F
(1
,0
)

j
F k

FF F
(0
,2
)

jk
F
(0
,1
)

j;l
F k

F l

FF F
(0
,1
)

j
F
(2
,0
)

j

FF F
(0
,1
)

j
F
(1
,1
)

j;k
F k

FF F
(0
,1
)

j
F
(0
,2
)

j;k
l

F k
F l

FF F
(0
,1
)

j
F
(0
,1
)

j;k
F
(1
,0
)

k

FF F
(0
,1
)

j
F
(0
,1
)

j;k
F
(0
,1
)

k;
l

F l
∆xxx 1 1

2
1
2

1
6

1
3

1
6

1
6

1
6

1
24

1
8

1
8

1
24

1
8

1
8

1
8

1
8

1
24

1
12

1
24

1
24

1
24

kkk1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

kkk2 1 1
2

1
2

1
8

1
4

1
8 0 0 1

48
1

16
1

16
1
48 0 0 0 0 0 0 0 0 0

kkk3 1 1
2

1
2

1
8

1
4

1
8

1
4

1
4

1
48

1
16

1
16

1
48

1
8

1
8

1
8

1
8

1
16

1
8

1
16 0 0

kkk4 1 1 1 1
2 1 1

2
1
2

1
2

1
6

1
2

1
2

1
6

1
2

1
2

1
2

1
2

1
8

1
4

1
8

1
4

1
4

We have ∆xxx = xxx(t + h)− xxx(t) = (kkk1 + 2kkk2 + 2kkk3 + kkk4)/6 + O(h5), and the classical Runge–Kutta
method RK4 is indeed of the 4th order of accuracy.

Problems and exercises
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1. Consider the system of equations dx/dt = v, dv/dt = −sin(x)−0.02v. Solve the system with
the initial condition x(0)= 0, v(0)= 2.125 numerically, using forward Euler, explicit midpoint (RK2),
and classical Runge–Kutta (RK4) methods. Find out how the error in[

x(20) v(20)
]
=
[

6.8426504104428864014... 1.7912033841288853138...
]

scales with h.
2. Consider the system of equations dx/dt = p, dp/dt = x−x2.40 Solve the system with the initial

condition x(0) = 0.01, p(0) = 0.009 numerically, using forward Euler, explicit midpoint (RK2), and
classical Runge–Kutta (RK4) methods. Log-log plot the error in[

x(20) p(20)
]
=
[

0.48859294559329852479... 0.40118050259290873684...
]

vs. the step size h for all the three methods.
3. Consider the system of N ordinary differential equations (1 < n < N)

du1(t)
dt

=
−u1(t)+u2(t)

2(∆x)2 ,
dun(t)

dt
=

un−1(t)−2un(t)+un+1(t)
2(∆x)2 ,

duN(t)
dt

=
uN−1(t)−uN(t)

2(∆x)2

where ∆x = 1/N, and N = 100. (This is a discretization of ∂u/∂t = 1
2∂2u/∂x2 diffusion equation on

0 < x < 1 segment, with zero flux boundary at the walls located at x = 0 and x = 1. The quantity
un(t) could be thought as the concentration of diffusing particles inside

(
(n− 1)/N,n/N

)
interval.)

Consider the initial condition un(0) ..=CNx2
n(1− xn), where xn

..= (n− 1
2)/N and CN

..= N/∑
N
n=1 x2

n(1−
xn). Solve the system to find un(1) by (a) forward Euler using the time step τ = 1/9992; (b) forward
Euler with τ = 1/10000; (c) backward Euler, τ = 1/100. Plot un(t = 1) as a function of n.

14 Adaptive step size
To reduce computational cost / improve accuracy of computation we would like to increase / de-

crease the step size. The former reduces the number of steps, while the latter shrinks the local (and
then the global) error in each step. We would like to go with large steps through dull, uninteresting
parts of our dynamics, while it is desirable to make small steps in tricky parts of the dynamics in order
not to lose accuracy. To do so, we constantly need to be aware of whether we are satisfied with the
current, intantaneous quality of solution.

An easy way to estimate the accuracy of numerical solution is to compare it with another solution,
of comparable or even better quality. With whatever numerical scheme you are using, one possibility
is to compare xxx(t + h), obtained from xxx(t) by one full step h, with xxx(t + h) obtained from xxx(t + 1

2h),
which itself is an (h/2)-update of xxx(t). Then we compare the two versions of xxx(t + h), and if, let
us say, it is greater than some tolerance level, we do not accept such an update of xxx(t). The next
thing is to tune the size step in such a way that the predicted difference between the two versions of
xxx
(
t +new h

)
would be close to the tolerance level:

new h ..=
(

frac · tolerance level
difference of the two xxx(t +h) versions

)1/(p+1)
·h

40 This is a Hamiltonian system, with H (x, p) = 1
2 p2− 1

2 x2 + 1
3 x3.
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Here p is the order of accuracy of our scheme, and frac is the so called safety fraction.
Example 14: Consider the following system of ODEs dx/dt = p, dp/dt = −x/

√
1+ x2 with

initial condition x(0) = 10, p(0) = 0.41 We would like to construct the trajectory x(t), p(t) for 0 ≤
t ≤ tend = 20. Let us employ RK4 method and choose the step size adaptively, as described above:

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define m 2
int counter; /* number of calculations of the r.h.s. f */
void RHS(double t, double *x, double *f)

{ f[0] = x[1]; f[1] = -x[0] / sqrt(1. + pow(x[0], 2.)); counter++; }

/* classical Runge--Kutta method (RK4) */
#define s 4
double X[s][m], K[s][m], a[4][4] = { { 0., 0., 0., 0.},

{1./2., 0., 0., 0.},
{ 0., 1./2., 0., 0.},
{ 0., 0., 1., 0.} },

b[s] = {1./6., 1./3., 1./3., 1./6.}, c[s] = {0., 1./2., 1./2., 1.};

void explicit_Runge_Kutta(double h, double t, double *x0, double *x1) {
int i, j, l;
for (i = 0; i < s; RHS(t + c[i] * h, X[i], K[i]), i++) for (l = 0; l < m; l++)
for (X[i][l] = x0[l], j = 0; j < i; j++) X[i][l] += h * a[i][j] * K[j][l];

for (l = 0; l < m; l++)
for (x1[l] = x0[l], i = 0; i < s; i++) x1[l] += h * b[i] * K[i][l]; }

int main(int argc, char **argv)
{
double t, dt, t_end = 20., x[m], xh[m], xhh1[m], xhh2[m];
double local_error, tolerance = 15. * atof(argv[2]), frac = atof(argv[1]);

x[0] = 10.; x[1] = 0.; t = 0.; dt = atof(argv[3]);
printf("%22.16e % 22.16e % 22.16e 0\n", t, x[0], x[1]);
for (counter = 0; t < t_end;)
{
if (t + dt > t_end) dt = t_end - t;

/* Runge--Kutta, full step */
explicit_Runge_Kutta(dt, t, x, xh);

/* Runge--Kutta, two half steps */
explicit_Runge_Kutta(0.5 * dt, t, x, xhh1);
explicit_Runge_Kutta(0.5 * dt, t, xhh1, xhh2);

/* estimating new time step from the mismatch between the two updates */
local_error = sqrt(pow(xh[0] - xhh2[0], 2.) + pow(xh[1] - xhh2[1], 2.));

/* checking whether the time step is accepted or rejected */
if (local_error < tolerance) { t += dt; x[0] = xhh2[0]; x[1] = xhh2[1];

printf("%22.16e % 22.16e % 22.16e %d\n", t, x[0], x[1], counter); }
dt = dt * pow(frac * tolerance / local_error, 0.2);

} return 0; }

41 This system is Hamiltonian, with H (x, p) = 1
2 p2 +

√
1+ x2.
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Here is the graph of p(t), the tolerance level is 10−8, the points on the graph are actual consecutive
points of the obtained numerical solution (one can see that near x = 0, where the “velocity” p(t)is the
maximal, the time step is a lot smaller):
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On the right is the graph that shows the dependence of the total
number of the r.h.s. fff (t,xxx) calculations to reach the final time tend =
20 as a function of frac. The curves correspond (from bottom to top)
to tolerance levels 10−4, 10−6, 10−8, 10−10, and 10−12. Whenever
frac is too small, we propagate forward with smaller steps, so we
need more steps. On the other hand, if frac is too large, we expect
rejections of the step to happen more ofter, so we’ll still need many
r.h.s. calculations.

 1000

 10000
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Problems and exercises
1. Consider the system of ODEs dx/dt = p, dp/dt =−x/

√
1+ x2 with initial condition x(0) = 10,

p(0) = 0 (Example 14). Find x(20), p(20) by Dormand–Prince method with adaptive step size. Plot
how the number of the r.h.s. evaluations changes with the tolerance level.
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15 Boundary value problems

15.1 Quasi-linearization
Discretizing the ODEs somehow, write down the BVP as a (linear or non-linear) system of equa-

tions, which then solve, e.g., by Newton–Raphson method (in this case the method is called quasi-
linearization).

15.2 Shooting method
Consider the BVP dxxx/dt = fff

(
t,xxx(t)

)
with boundary conditions ggg0

(
xxx(t0)

)
= 000 and ggg1

(
xxx(t1)

)
= 000.

Construct the system of equations for xxx(t0) being (ggg0 =000 and ggg1 =000), in which the argument of ggg1, the
vector xxx(t1) is treated as a vector function of xxx(t0) that is computed by an ODE solver. The resulting
system of equations is solved by methhods of Part III. The parts of xxx(t0) which are not immediately
determined from ggg0

(
xxx(t0)

)
= 000 are called shooting parameters.

15.3 Petviashvili factor

15.4 Galerkin method

Problems and exercises
1. Consider the BVP u′′+u2 = 0 with u(±1) = 0 boundary conditions. There are two solutions:

u(x) ≡ 0 and a “non-trivial” one. Find the latter solution by (a) quasi-linearization method uuun+1
..=

uuun−
(
(∇ fff )(uuun)

)−1 fff (uuun):

uuu =



u(−1)
u(−1+h)

u(−1+2h)
...

u(x)
...

u(1−h)
u(1)


, fff (uuu) =



u(−1)
u(−1)−2u(−1+h)+u(−1+2h)+h2u2(−1+h)

u(−1+h)−2u(−1+2h)+u(−1+3h)+h2u2(−1+2h)
...

u(x−h)−2u(x)+u(x+h)+h2u2(x)
...

u(1−2h)−2u(1−h)+u(1)+h2u2(1−h)
u(1)


(b) simple shooting method (there is only one shooting parameter here, e.g., u′(−1)); and (c) func-
tional iteration with Petviashvili factor:

vn(x) ..= An · (x+1)−
x∫
−1

dξ1

ξ1∫
−1

dξ2 u2
n(ξ2), by construction v′′n =−u2

n and vn(−1) = 0

An is chosen to enforce vn(1) = 0

un+1(x) ..= vn(x) ·


1∫
−1

dξ
(
−v′′n(ξ)

)
1∫
−1

dξ v2
n(ξ)


α

, α ..= 1 for faster convergence
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Part V

Optimization
Suggested reading: [BoVa09, Chs. 9, 10, 11].
It is important to note that one can optimize only one function at once. Whenever you claim that

you simultaneously optimize two (or more) functions, you are
actually optimize a certain combination of those.

Example V.1: Consider a function with a narrow mini-
mum, f (x) = x2−2exp

(
−(x−1)2/2σ2), with σ being small,

e.g., σ = 1/40. It has a local minimum near x = 0 and a global
minimum near x = 1. If one doesn’t test the values of the
function near x = 1, one may not even realize the existence of
the narrow peak pointing downward. Whenever you don’t as-
sume anything about the function you need to optimize, there
is no method (other than brute-force exhaustive search within
the whole feasible region) that will find a global optimum in a
guaranteed way.

Maximizing f (xxx) is the same as minimizing − f (xxx).

0−1 0.5

−1

1

2

x

y

16 Least squares problem
Suggested reading: [TrBa97, Lecs. 11, 18, 19].
Consider a quadratic function f (xxx) = 1

2 xxxTÂxxx−xxxTbbb+c. At its minimum (or just extremum) xxx∗ the
derivative (or gradient) is zero: ∇f (xxx∗) =000. Derivative of quadratic function is linear, thus ∇f (xxx∗) =000
is a system of linear equations for xxx∗.

In the combination xxxTÂxxx any assymetric part of Â is killed, and [if the matrix Â is not symmetric]
one can substitute Â by 1

2(Â + ÂT). Matrix Â then is diagonalizable with real eigenvalues. If at
least one of the eugenvalues is strictly negative, then there is no lower bound for the values of f (xxx).
Consider some eigenvalue of Â are zero, with yyy being the corresponding eigenvector. If yyy ·bbb= yyyTbbb 6= 0,
then there is no lower bound for the values of f (xxx).

The equation ∇f (xxx∗) = 000 for the position of minimum xxx∗ reads as Âxxx∗= bbb. The solution can be
found by standard methods like Gaussian elimination, QR factorization, or (as Â is real symmetric)
using Cholesky factorization Â = R̂TR̂, where R̂ is upper triangular. The latter can be done two times
faster than standard LU factorization. See, e.g., [TrBa97, Lec. 23].
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A least squares problem in linear algebra is the best “solution” to an overdetermined system of
linear equations Âxxx =bbb, where Â is an m×n matrix with m> n. We have m equations for n unknowns,
and unless the equations are redundant, one doesn’t expect a solution to exist. Instead we look for the
vector xxx that minimizes the norm of the residual:

xxx∗ ..= argmin
xxx

∥∥Âxxx−bbb
∥∥

2 = argmin
xxx

(
xxxTÂTÂxxx−xxxTÂTbbb−bbbTÂxxx+bbbTbbb

)
The minimized function is clearly bounded from below by 0, and if the matrix Â is of full rank, i.e.,
rank Â = n < m, then the solution is unique: xxx∗ =

(
ÂT Â

)−1ÂTbbb. Of course, numerically the solution
is found without forming the matrix ÂT Â, as κ(ÂT Â) = κ2(Â). If Â = Q̂R̂ and Â = Û Σ̂V̂ † are the QR
factorization and SVD of Â, respectively, then xxx∗ = R̂−1Q̂†bbb = V̂ Σ̂−1Û†bbb (the action by R̂−1 and by
Σ̂−1 is done by back substitution or by dividing by the diagonal matrix elements of Σ̂).

Problems and exercises
1. Consider the problem of fitting the cloud of points (xi,yi), 1 ≤ i ≤ N, by a linear function

y = ax+ b. The fit minimizes the sum of squares ∑
N
i=1(axi + b− yi)

2. Write down explicit formulas
for a and b. When the solution for a and b is not unique?

2. Fit the cloud of points S5 =
{
(−2,−3), (−1,−1), (0,5), (2,5), (3,1)

}
by y= ax+b line using

the least squares method,1 i.e., solve the following least squares problem

[
a∗
b∗

]
..= argmin

a,b

∥∥∥∥∥∥∥∥∥∥


−2 1
−1 1

0 1
2 1
3 1


[

a
b

]
−


−3
−1

5
5
1


∥∥∥∥∥∥∥∥∥∥

2

17 Descent methods
Consider a continuously differentiable function f (xxx). The gradient vector ∇f (xxx) is the direction

of the fastest growth of the function f (xxx), locally we have f (xxx + εεε) ≈ f (xxx) +
(
∇f (xxx)

)
· εεε. If we

move against its gradient, dxxx/dt ..=−∇f (xxx), then the function f
(
xxx(t)

)
is non-increasing: d f (xxx)/dt =

∇f (xxx) ·dxxx/dt =−‖∇f‖2 ≤ 0. This gives an idea how to compute the position xxx∗ of the minimum:
Algorithm ẋxx = −∇f : The minimum xxx∗ is estimated as xxx(t) at sufficiently large t. The trajectory

xxx(t) is computed by some ODE solver, one needs to supply the initial condition xxx(0).
Some example functions that are going to be used:

G2(x,y) =−x2− y2− x(x+ y)2 +
(
x2 + y2)2

Rosenbrock function2 Rn(x1,x2, ...,xn) =
n

∑
i=1

(xi−1)2 +A
n−1

∑
i=1

(
xi+1− x2

i
)2
, A is large, e.g., A = 100

Here the lower index indicates the number of variables.
1 See also the Anscombe’s quartet data.
2 H. H. Rosenbrock, An automatic method for finding the greatest or least value of a function, The Computer Journal

3 (3) 175–184 (1960).
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This algorithm may work not too well. Here is it being applied to the 2-dimensional Rosenbrock
function R2(x1,x2) with x1(0) = 0 and x2(0) = 1:

forward Euler explicit midpoint (RK2) classical Runge–Kutta (RK4)

0

0

0

0.5

0.5

0.5

1

1

1

−0.5

1

1

x1

x1

x1

x2 x2 x2

∆t = 0.02
∆t = 0.01 ∆t = 0.01

∆t = 0.01

∆t = 0.005

∆t = 0.005

∆t = 0.005

∆t = 0.002

∆t = 0.002

∆t = 0.002

The system of ODEs dxxx/dt = −∇R2(xxx) is stiff, e.g., the equation
for x2 is dx2/dt =−200(x2− x2

1), i.e., the component x2 decays to
the value x2

1 with the rate 200. For explicit methods to produce a
decaying solution, the step size ∆t should be small, no matter what
is the order of accuracy of the method (here ∆t = 0.002 is small
enough for all the three methods to converge to the minimum at
x∗1 = x∗2 = 1, one need thousands of time steps though). One can

backward Euler
x2

x1

∆t = 0.1

∆t = 1

0.5

0.75

0.5 1

try a method with stiff decay property, e.g., backward Euler, but that would result in solving a system
of [non-linear] equation in each time step. The whole minimization problem is more or less equivalent
to the system of equations ∇f (xxx∗)=000, so solving a system at each time step seems to be too expensive.
Each step of backward Euler can be considered as solving the following minimization problem:

xxx(t +∆t) ..= argmin
XXX

(
‖XXX−xxx(t)‖2

2∆t
+ f (XXX)

)
The function in brackets is equal to 0 at XXX = xxx(t), and ‖XXX−xxx(t)‖ ≥ 0, so it is guaranteed that f

(
xxx(t +

∆t)
)
≤ f
(
xxx(t)

)
. Still Algorithm ẋxx =−∇f (with backward Euler as a method of solving the system of

ODEs) at best could be viewed as an application of continuation method to solve the system ∇f (xxx∗) =
000, which one may want to try, e.g., due to no good initial guess for xxx∗.

Here is how the ∇R2(xxx∗) = 000 system [of two equations] is solved in GNU Octave3

octave:1> fsolve(@(x) [2. * (1. - x(1)) - 400. * x(1) * ((x(1))ˆ2 - x(2)), 200.

* ((x(1))ˆ2 - x(2))], [0., 1.])
ans =

0.84715 0.71697

octave:2> format long; options = optimset(’TolX’, 1.e-13, ’MaxIter’, 10000);
octave:3> fsolve(@(x) [2. * (1. - x(1)) - 400. * x(1) * ((x(1))ˆ2 - x(2)), 200.

3 MATLAB R© is a commercial software, see MathWorks MATLAB licensing for UA Faculty, Staff & Students.
GNU Octave is one of several (less effective) free alternatives to MATLAB, with mostly compatible syntax.

3
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* ((x(1))ˆ2 - x(2))], [0., 1.], options)
ans =

9.999996886399101e-01 9.999993759833326e-01

octave:4> newton(@(x) [2. * (1. - x(1)) - 400. * x(1) * ((x(1))ˆ2 - x(2)); 200.

* ((x(1))ˆ2 - x(2))], [0.; 1.])’
counter = 7
ans =

1 1

Here newton.m implements the Newton–Raphson method, with the Jacobian matrix ∇fff being com-
puted through finite differences. Solving the system ∇f (xxx∗) = 000 by Newton’s method in order to
minimize the function f is discussed in Sec. 18. Notice that for the built-in solver fsolve to produce
an answer close to the exact x∗1 = x∗2 = 1, we had to tweak the solver parameters (mainly the maximal
number of iterations allowed) using optimset command.

The trajectories xxx(t) on “backward Euler” picture were obtained by the following MATLAB script:
X12 = @(x) (x(1))ˆ2 - x(2);
RHS = @(x) [2. * (1. - x(1)) - 400. * x(1) * X12(x); 200. * X12(x)];
x0 = [0.; 1.]; dt = 0.1; diff = 1.; options = optimset(’MaxIter’, 10000);
while (diff > 1.e-6)

x = fsolve(@(x) ((x - x0) / dt - RHS(x)), x0, options);
diff = norm(x -x0); x0 = x

end

Here is the pseudo-code of a general descent method, with possible variants of its steps:
start with some initial guess xxx
while (stopping critedia is not met) do

‖∇f (xxx)‖ ≤ some small number
pick direction ∆xxx

gradient descent: ∆xxx ∝−∇f (xxx)
steepest descent: ∆xxx ..= argmin‖∆xxx‖=1 ∇fff ·∆xxx

‖ · ‖ could be, e.g., L1- or weighted norm
line search: choose step size t

exact line search: t ..= argmins f (xxx+ s∆xxx), i.e., the step size t is
found from exact one-dimensional minimization4

backtracking line search: start with some not too small t, then
reduce t until f (xxx+ t∆xxx)< f (xxx)+α∇f ·

(
t∆xxx
)
, 0≤ α < 1

update: xxx ..=xxx+ t∆xxx
return xxx

4 This may be ...
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Example 17.1: Here is the gradient descent metod with backtraching, α = 0, applied to G2(x,y):

-1

-0.5

 0

 0.5

 1

-1 -0.5  0  0.5  1  1.5  2

Example 17.2: Here is the gradient descent method with backtraching, α = 0, applied to the
Rosenbrock function R2(x,y) (initial guess is xxx =

[
0 1

]T):

import numpy as np
def f(x):

return (x[0][0] - 1.)**2 + 100. * (x[1][0] - (x[0][0])**2)**2
def grad_f(x):

x21, grad_f = x[1][0] - (x[0][0])**2, np.array([[2. * (x[0][0] - 1.)], [0.]])
grad_f[0][0], grad_f[1][0] = grad_f[0][0] - 400. * x[0][0] * x21, 200. * x21
return grad_f

x, old_F, F, dt = np.array([[0.], [1.]]), 0., 101., 0.01
while (abs(F - old_F) > 1.e-10):

print(x[0][0], x[1][0], F, dt)
old_x, old_F, F_x = x, F, grad_f(x)
x, dt = x - dt * F_x, 1.1 * dt
F = f(x)
if (F > old_F):

x, F, old_F, dt = old_x, old_F, old_F + 1., 0.5 * dt
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Example 17.3: Consider f (x,y) = x2 +Ay2, with A ≥ 1. Let us apply to it the gradient descent
method with exact line search. One iteration of the descent method consists in the mapping

∇f (x,y) = 2
[

x
Ay

]
, t∗ = argmin

t

(
(x+ tx)2 +A(y+Aty)2

)
=−x2 +A2y2

x2 +A3y2[
x
y

]
7−→

[
x+ t∗x

y+At∗y

]
=

(A−1)xy
x2 +A3y2

[
A2y
−x

]
7−→ (A−1)2Ax2y2

(x2 +A3y2)(x2 +Ay2)

[
x
y

]
In particular, [

A
±1

]
C 7−→ A−1

A+1

[
A
∓1

]
C

The rate of decrease of the variables x, y (the minimum is at x∗ = y∗ = 0) depends just on the ratio of x
and y, and is minimal at x=±Ay. When A is large, the decrease of x and y is slow (as (A−1)/(A+1)≈
1).

Problems and exercises
1. Consider a function H2(x,y) = 50

√
g(y2− x2)+(x−10)2+y2, where g(x) =

√
x2 +1+x. Find

the minimum of H2 by the gradient descent method, starting from (x,y) = (−50,40).
2. Consider a function V2(x,y) = (x+ 3)2 + y2e−2x. Find the minimum of (a) V2(x,y) and (b)

W2(x,z) ..= V2(x,y = z/20) by the gradient descent method, starting from (x,y) = (0,1) or (x,z) =
(0,20). (c) The part (b) can be considered as an application of the steepest descent method to V2.
What norm ‖∆xxx‖ is used?
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18 Newton’s method
Consider a twice continuously differentiable function f : RRRn→RRR that we want to minimize. At

the position of minimum xxx∗ we have ∇f (xxx∗) = 000. We may think about this equation as a system of
equations for the components of vector xxx, and then try to solve it be Newton–Raphson method

xxx 7−→ xxx− (∇2f )−1
∇f

Such updates of the position xxx is so called pure Newton method.
Interpretations: 1) solution of the system ∇f (xxx∗) = 000 by Newton–Raphson method; 2) minimiza-

tion of local quadratic approximation; 3) steepest descent method with weighted norm ‖Ŵxxx‖2, where
Ŵ TŴ = ∇2f .

As the solutions of ∇f (xxx∗) = 000 are not necessarily local minima, the pure Newton method could
converge to local maxima, saddle points, etc.

Example 18.1: Here is the pure Newton method applied to G2(x,y). In the plot below it is shown
for a grid of initial vectors

[
x y

]T where, if starting from them, the pure Newton method converges
to. The method more or less converges to the closest point where ∇G2 = 000, and this point could
be local minimum (open circle, blue triangle, and red square), maximum (black circle), saddle point
(cyan and orange triangles, and green square). Larger shapes show the position of the corresponding
points with ∇G2 = 000, while small shapes correspond to positions starting from which the Newton’s
method converges to a corresponding zero gradient point.

8



The pure Newton method is invariant under affine transformations: Let the vectors xxx and yyy be
connected by xxx = T̂yyy. Consider a function f (xxx) and its deformation g(yyy) = f (T̂yyy). We have

∂g(yyy)
∂yi

= ∑
j

∂ f (xxx)
∂x j

∣∣∣∣
xxx=T̂yyy
·

∂x j

∂yi︸︷︷︸
Tji

or ∇yyyg(yyy) = T̂ T
∇xxx f (xxx)

∂g(yyy)
∂yi∂y j

= ∑
k

∂ f (xxx)
∂xk∂xl

∣∣∣∣
xxx=T̂yyy
· ∂xk

∂yi︸︷︷︸
Tki

∂xl

∂y j︸︷︷︸
Tl j

or ∇
2
yyyg(yyy) = T̂ T

∇
2
xxx f (xxx)T̂

xxx = T̂yyy 7−→ T̂
(

yyy−
(
∇

2
yyyg(yyy)

)−1
∇yyyg(yyy)

)
= xxx− T̂

(
T̂ T

∇
2
xxx f (xxx)T̂

)−1
T̂ T

∇xxx f (xxx) = xxx−
(
∇

2
xxx f (xxx)

)−1
∇xxx f (xxx)

Example 18.2: Consider f (x) =
√

x2 +1. Then the pure Newton updates would be

f ′(x) =
x√

x2 +1
, f ′′(x) =

1
(x2 +1)3/2 , x 7−→ x− x/

√
x2 +1

1/(x2 +1)3/2 = x− (x2 +1)x =−x3

Whenever |x| > 1, the next iteration of the pure Newton method is going to drive x further from the
minimum of f at x∗ = 0.

In order to improve the realiability of the Newton method, ...
Damped Newton method: xxx 7−→ xxx− t(∇2f )−1∇f , where t is obtained from line search. It is a de-

scent method, there the direction of search is obtained from the Newton method: ∆xxx =−(∇2f )−1∇f .
Levenberg–Marquardt algorithm: xxx 7−→ xxx− t(∇2f +µÎ)−1∇f . In the limit µ→ 0 /+∞ we repro-

duce Newton / gradient descent methods.
Example 18.3: Consider f (x) = ax+by+(cx2 + y2)/2. At x = y = 0 we have5

∇f (x) =
[

a
b

]
, ∇

2f (x) =
[

c 0
0 1

]
, −

(
∇

2f
)−1

∇f =−
[

c 0
0 1

]−1[ a
b

]
=−

[
a/c
b

]
(
∇f
)
·
(
−
(
∇

2f
)−1

∇f
)
=−a2

c
−b2,

(
∇f
)
·
(
−
(
∇

2f +µÎ
)−1

∇f
)
=− a2

µ+ c
− b2

1+µ
5 You may think about this example as follows: The Hessian ∇2 f is symmetric, so it can be diagonalized. Here x- and

y-axis are the directions of ∇2 f ’s eigenvalues. Here all the Taylor series terms beyond quadratic ones are dropped. By
rescaling the coordinates, we make the coefficient at y2 being 1/2, i.e., ∂2 f/∂y2 = 1.
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If the function f is non-convex, c could be negative, and then −a2/c− b2 could end up being
positive. The direction of search is wrong, as locally moving in this direction increases the function.

18.1 Quasi-Newton methods
Consider f : RRR→ RRR, and we want to find such x∗ that f (x∗) = 0. The updates according to

Newton–Raphson method are xk+1
..= xk− f (xk)/ f ′(xk).

Imagine we don’t want to calculate the derivative of function f . We can estimate it trough fi-
nite differences. We can consider an update rule xk+1 = xk− f (xk) · (xk− xk−1)/

(
f (xk)− f (xk−1)

)
.

Geometrically this corresponds to forming a line that goes through the points
(
xk−1, f (xk−1)

)
and(

xk, f (xk)
)
, and then find where this line crosses zero. A method of finding a root of a function with

this update rule is called secant method.
Example 18.4 Consider we want to compute

√
2, so we construct the function f (x) = x2−2 and

then find its root(s). Let us apply Newton–Raphson method and secant method, starting with x0 = 0.4
and x1 = 2.7:

Newton–Raphson secant
x0 0.4 0.4
x1 0.4− (0.42−2)/0.8 = 2.7 2.7
x2 929/540≈ 1.720370370370370 154/155≈ 0.9935483870967741
x3 1446241/1003320≈ 1.441455368177650 7258/5725≈ 1.267772925764192
x4 1.414470981367771 1446241/1003320≈ 1.441455368177650
x5 1.414213585796884 1.412741073918240
x6 1.414213562373095 1.414199508244253
x7 1.414213569693568
x8 1.414213562373059
x9 1.414213562373095√
2 1.414213562373095048801688724209698...

Algorithm BFGS (Broyden–Fletcher–Goldfarb–Shanno algorithm): Quasi-Newton algorithm with
low rank updates of the Hessian approximation at each step.

start with k = 0, some initial guess xxx0 and Ĉ0 (e.g., Ĉ0 = Î)
while (‖∇f (xxxk)‖> ε) do

pick direction ∆xxxk
..=−Ĉk∇f (xxxk)

line search: choose step size t
backtracking line search: start with some not too small t, then reduce t
(e.g., t← βt) until f (xxxk+t∆xxxk)< f (xxxk)+α∇f (xxxk) ·

(
t∆xxxk

)
, 0≤α < 1

update: xxxk+1
..=xxxk +

(
dddk

..= t∆xxxk
)

gggk
..=∇f (xxxk+1)−∇f (xxxk)

Ĉk+1
..=

(
Î−

dddk gggT
k

gggT
k dddk

)
Ĉk

(
Î−

gggk dddT
k

gggT
k dddk

)
+

dddk dddT
k

gggT
k dddk

Ĉ is an approximation of inverse Hessian, Ĉ ≈ (∇2f )−1

and Ĉk+1 is chosen from the condition dddk = Ĉk+1gggk, which is
an approximation of ∇f (xxxk+1)−∇f (xxxk)≈ (∇2f ) ·

(
xxxk+1−xxxk

)
k← k+1

return xxxlast
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Example 18.5 Let us apply BFGS method to R2(x,y). Here is a MATLAB script:

function [x] = BFGS_R2(x)
f = @(x) ((x(1) - 1)ˆ2 + 100 * (x(2) - (x(1))ˆ2)ˆ2);
df = @(x) (2 * [x(1) - 1; 0] + 200 * (x(2) - (x(1))ˆ2) * [-2 * x(1); 1]);
F = f(x); dF = df(x); C = eye(length(x));
while (norm(dF) > 1.e-12)

d = -C * dF;
while (f(x + d) >= F)

d = d / 2.;
if (norm(d) < eps)

C = eye(length(x)); d = -dF;
end

end
x = x + d; F = f(x); new_dF = df(x); g = new_dF - dF; dF = new_dF;
rho = 1. / (g’ * d); mu = rho * (1. + rho * (g’ * C * g));
C = C - rho * (d * (g’ * C) + (C * g) * d’) + mu * d * d’;

end

octave:1> BFGS_R2([0; 1])

0. 1.
0.015625 -0.5625
-0.2605890939040998 -0.002902255146133292
0.3913828287588037 0.07627178330541139
0.2521830924078697 0.1044103708834347
0.2988661772597083 0.09405969456641125
0.3466003737396083 0.1040695448518871
0.3592647314084498 0.1156911711064965
0.5263173496617095 0.2453304005070866
0.5188182427260010 0.2716690732076990
0.6011469854117857 0.3548731818406570
0.6925269268918063 0.4563841342293742
0.6747491664659666 0.4475149568539881
0.7143015319640732 0.5073274307022437
0.8381443235933718 0.6837312358530869
0.7986209536630781 0.6368555689833639
0.8340051975976166 0.6934920772241859
0.8937025247897291 0.7914764619245512
0.9136520114636923 0.8303169726010279
0.9509644199894306 0.9019550045848869
0.9705682730518248 0.9421854653766993
0.9950326701317903 0.9879595713889101
0.9926616882035864 0.9851558833421766
0.9977406839316127 0.9954588419091560
0.9999291150286614 0.9998429509407731
0.9999963589854302 0.9999925797940143
1.000000030472313 1.000000059038727
0.9999999999259571 0.9999999998718994
0.9999999999998126 0.9999999999995955
1.000000000000000 1.000000000000001 –0.6

–0.4

–0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

–0.4 –0.2  0  0.2  0.4  0.6  0.8  1  1.2

import numpy as np
def f(x):

return (x[0] - 1.)**2 + 100. * (x[1] - (x[0])**2)**2
def grad_f(x):

x21, grad_f = x[1] - (x[0])**2, np.array([2. * (x[0] - 1.), 0.])
grad_f[0], grad_f[1] = grad_f[0] - 400. * x[0] * x21, 200. * x21
return grad_f
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x, alpha, mu = np.array([0., 1.]), 0.75, 0.1
old_x, grad = x, grad_f(x)
while (max(abs(grad[0]), abs(grad[1])) > 1.e-10):

print(x[0], x[1], f(x))
old_x, x = x, x + mu * (x - old_x)
grad = grad_f(x)
d = -grad
while (f(x) + alpha * np.inner(grad, d) < f(x + d)):
d = 0.7 * d

x = x + d

–0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8

Problems and exercises
1. Consider a function H2(x,y) ..= exp(8x−13y+21)+ exp(21y−13x−34)+0.0001exp(x+ y).

Is it convex/strictly convex? Minimize it, i.e., find (x∗,y∗) = argmin(x,y)H2(x,y).
2. Minimize a function J2(x,y) ..= 3xy−2y+1000(x2 + y2−1.1) exp

(
10(x2 + y2−1)

)
.

3. Consider a 99-dimensional vector xxx with components x1, x2, ..., x99. For convenience, the
dummy components x0 = −1 and x100 = 1 are introduced, but x0 and x100 are not variables in the
optimization problem below. Minimize a function

E99(xxx) ..=
1
2

99

∑
i=0

(
xi+1− xi

)2
+

1
16

99

∑
i=1

(
1− x2

i
)2
, xxx∗ = argmin

xxx
E99(xxx)

Find E99(xxx∗). Plot the vector xxx∗ (how the component x∗i, 0≤ i≤ 100, changes with i).
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19 Equality constrained minimization
Consider we want to minimize a function f (xxx), xxx ∈ RRRn, subject to a set of equality constraints

hi(xxx) = 0, i = 1,2, ...,neq.6

One method is to parametrize the set of points xxx satisfying the equality constraints by n− neq
coordinates yyy ∈RRRn−neq , and then solve unconstrained optimization problem in yyy variable.

Example 19.1: Let us minimize K2(x,y) = x+ xy subject to h1(x,y) = x2 + y2− 1 = 0. We can
parametrize the set [of points satisfying the constraint] x2 + y2 = 1 as (cosϕ,sinϕ), 0 ≤ ϕ < 2π.
Then we have K2(x,y)→ K2(ϕ) = cosϕ+cosϕsinϕ = cosϕ+ 1

2 sin2ϕ. The minimum of K2(ϕ) is at
ϕ∗ = 5π/6, which corresponds to x∗ =−

√
3/2, y∗ = 1/2, p∗ = K2(x∗,y∗) =−3

√
3/4.

–1.5

–1

–0.5

 0

 0.5

 1

 1.5

 0  1  2  3  4  5  6

K
2
(p

h
i)

phi

cos(x)+0.5*sin(2*x)

Example 19.1 continued: Let us introduce the Lagrangian anf the dual function

L (x,y;ν) = x+ xy+ν(x2 + y2−1), g(ν) = inf
x,y

L (x,y;ν) =

{
−4ν3/(4ν2−1), ν > 1/2
−∞, ν≤ 1/2

[...]/teaching/2020-1/math_575b/notes/Octave$ cat Lagrangian_K_2.m
function [grad_L] = Lagrangian_K_2(x)

grad_L = [1 + x(2); x(1); 0.] + x(3) * [2. * x(1); 2. * x(2); 0.];
grad_L(3) = (x(1))ˆ2 + (x(2))ˆ2 - 1.;

[...]/teaching/2020-1/math_575b/notes/Octave$ octave-cli
GNU Octave, version 4.4.1
[... copyright notice and links ...]
octave:1> format long; format compact
octave:2> newton(@Lagrangian_K_2, [0.2; 0.; 0.])’
counter = 34
ans =

6If we want the optimization problem to be convex, then f should be convex, while the set of points satisfying the
equality constraints should be convex too, i.e., it should be flat, and constraints could be written as linear ones.
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8.660254037844387e-01 5.000000000000001e-01 -8.660254037844385e-01

octave:3> newton(@Lagrangian_K_2, [-0.3; 0.; 0.])’
counter = 32
ans =

-8.660254037844431e-01 5.000000000000023e-01 8.660254037844236e-01

octave:4> newton(@Lagrangian_K_2, [0.; 0.; 0.])’
warning: matrix singular to machine precision
warning: called from

newton at line 14 column 7
counter = 2
ans =

1.192092909718666e-08 -1.000000000000000e+00 5.960464637411177e-09

octave:5> newton(@Lagrangian_K_2, [-0.8; 0.3; 0.])’
counter = 5
ans =

-8.660254039596367e-01 5.000000001235305e-01 8.660254033776313e-01

The maximum of g(ν) happens at ν =
√

3/2, with d∗ = g(ν∗) =−2(
√

3/2)3 =−3
√

3/4 = p∗.

Example 19.2: Let us minimize f (xxx) = 1
2xxxTQ̂xxx−xxxTrrr with the condition Âxxx = bbb. We form La-

grangian L (xxx,ννν) = 1
2xxxTQ̂xxx−xxxTrrr+νννT(Âxxx−bbb). Equating the gradient of L with respect to xxx and ννν to

zero, we get

Q̂xxx+ ÂT
ννν = rrr

Âxxx = bbb

Q̂

ÔÂ

ÂT xxx

ννν

=
rrr

bbb

It is an (n+ neq)× (n+ neq) system of linear equations, solving which would give the position of
optimum xxx∗ that automatically satisfy the condition Âxxx∗ = bbb, due to the lower part of the system.

Example 19.3: Consider R2(x,y) with the condition y = 2x−1.

function [x] = eq_R2(x)
flag = 1;
while (flag > 0)

G = 2 * [x(1) - 1; 0; 0] + 200 * (x(2) - (x(1))ˆ2) * [-2 * x(1); 1; 0];
% Hessian of R_2(x, y) % + nu * (y - 2 x - 1)

H = zeros(3);
H(1, 1) = 2. - 400. * x(2) + 1200 * (x(1))ˆ2;
H(1, 2) = -400 * x(1); H(2, 1) = H(1, 2);
H(2, 2) = 200.;
H(3, 1) = -2.; H(1, 3) = -2.;
H(3, 2) = 1.; H(2, 3) = 1.;
xold = x; x = x - H \ G; x(3) = 0.;
x’
if (norm(x - xold) < 1.e-8)

flag = 0;
end

end
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Example 19.4: Consider the function L2(x,y) = (x− 1)2 + (y− 1)2 subject to condition y2 =
x2−2x3/3.

The plot below is the map where the primal-dual Newton method (which is an application of
Newton method to the Lagrangian L (xxx,ννν)) converges to. There are 3 points (shown by larger shapes)
at which the gradient of L2 along the zero level curve of the equality constraint is zero: (1,±3−1/2)
and (0,0) (there are 2 directions of the level curve at this point, the gradient is zero along only one
of the directions). The small shapes correspond to positions (x,y,ν = 0) starting from which the
Newton’s method converges to a corresponding zero gradient point.

Let us consider another idea to solve an equality constrained optimization problem. Consider we
want to minimize f (xxx) subject to neq equality constraints hhh(xxx) = 000. We form a function

ft(xxx) ..= f (xxx)+ t
neq

∑
i=1

h2
i (xxx)

and minimize it for different values of t. Obviously, for the points on which hhh(xxx) = 000 we have ft(xxx) =
f (xxx). When t is large, then any non-zero values in hhh(xxx) would produce too large value of ft(xxx), so the
large t is, the better the solution of unconstrained minimization of ft(xxx) approximates the solution of
the equality constrained minimization.

When t is large, the function ft(xxx) has narrow valleys along the zero set of hhh(xxx), the fact needed
to be taken into account.

Example 19.4, continued: We have ft(x,y) = (x− 1)2 +(y− 1)2 + t(y2− x2 + 2x3/3)2. Let us
apply damped Newton method to it:

function [X] = newton_L2_eq(X, t)
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h = @(x) ((x(2))ˆ2 - (x(1))ˆ2 * (1. - 2. * x(1) / 3.));
f = @(x) ((x(1) - 1.)ˆ2 + (x(2) - 1.)ˆ2 + t * (h(x))ˆ2);
while (1 > 0)

F = f(X);
x = X(1); y = X(2); H = yˆ2 - xˆ2 + 2. * xˆ3 / 3.;
dF = 2. * [x - 1.; y - 1.] + 4. * t * H * [xˆ2 - x; y];
if (norm(dF) < 1.e-8)

break;
end
ddF = [2. + 8. * t * (xˆ2 - x)ˆ2 + 4. * t * (2. * x - 1.) * H, 0.; 0., 0.];
ddF(1, 2) = 8. * t * (xˆ2 - x) * y; ddF(2, 1) = ddF(1, 2);
ddF(2, 2) = 2. + 8. * t * yˆ2 + 4. * t * H;
d = -(ddF \ dF); flag = 0;
while (f(X + d) >= F)

d = d / 2.;
if (norm(d) < eps)

if (flag == 1)
break;

end
d = -dF; flag = 1;

end
end
X = X + d;
X’

end

Problems and exercises
1. Consider the function M2(x,y) = x2 + y2. Minimize and maximize it subject to the condition

(6x+29)2(x−1)2 +12(6x+31)(x−1)y2 +36y4 = 0.

20 Example V.2: image restoration7

Consider you have an “image” v (it is either a function v(x) or a two-dimensional picture v(x,y),
etc.). The image is distorted by noise, w = v+ ξ. Our task is to remove noise. We can pose it as a
following optimization problem

u∗ ..= argmin
u

(
1
2‖u−w‖2

2 +λ‖∇u‖ν
p

)
The 1st term tries to get most of the signal w that we have. The 2nd term tries to make the restored
image “smooth”, as we think of the noise ξ to be high frequency, not correlated from pixel to pixel,
etc. If λ = 0, then we just have u = w.

Consider the case p = ν = 2. Then u is the result of minimization of quadratic function. In the
case of one-dimensional signal we have

u∗ ..= argmin
u

∫
dx
(

1
2(u−w)2 +λ

(
u′(x)

)2︸ ︷︷ ︸
L (u,u′)

)
7 Adapted from [Cal20, Sec. 3.6].
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The Euler–Lagrange equation would be linear: (∂L /∂u′)′ = ∂L /∂u or (2λu′)′ = 2λu′′ = u−w. If
we do the Fourier transform, we get ŵ(k) = (1+ 2λk2)û(k) (even in higher dimensions), or u is the
convolution of w with a certain kernel, namely exp

(
−|x|/

√
2λ
)
/
√

8λ.
Let us think about an image as a graph, with vertices being the pixels, while edges indicate that

its endpoints are neighbors. The optimization problem looks simpler (i.e., more local) for ν = p:

u ..= argmin
u

(
1
2 ∑

v

(
uv−wv

)2
+ λ ∑

e=v1v2

∣∣uv1−uv2

∣∣p)
(It is possible to assign different values of λ to edges, if desired.)

The choice p[= ν] = 1 is better. Let us also smooth |u| as
√

ε2 +u2 with some small ε. The
problem with two pixels and one edge would look like

(u∗1,u∗2) ..= argmin
(u1,u2)

(
1
2(u1−w1)

2 + 1
2(u2−w2)

2 +λ

√
ε2 +(u1−u2)

2
)
= argmin

(u1,u2)

f (u1, u2)

If we do the minimization by ODE version of gradient, we get the equation of motion descent

du1

dt
=−∂ f (u1, u2)

∂u1
= w1−u1−λ

u1−u2√
ε2 +(u1−u2)

2
≈ w1−u1−

λ

ε
· (u1−u2)

The last approximate equality is written for the case when u1 and u2 are close, (u1−u2)� ε. (Similar
equation can be written for u2, and one can even write a closed equation for the difference u ..=u1−u2.)
In that case−d(du/dt)/du = f ′′(u) = 2λ/ε is large, and we need small step size (not greater than ε/λ

if we use forward Euler method) in order for an explicit scheme for solving the ODE for u to be in its
region of absolute stability.

Let us add some inertia to the ODE we are trying to solve:

m
d2u
dt2 +

du
dt

=− f ′(u) =− 2λu√
ε2 +u2

You may imagine a particle of mass m moving in the potential f (u), while the term du/dt provides
a friction force. (In the limit m,λ→ ∞ with λ/m being fixed we get a Hamiltonian system with
no dissipation.) This is similar to applying Polyak’s heavy ball or Nesterov’s fast gradient meth-
ods, instead of just gradient descent. For small u we have the system mü+ u̇+ λu/ε = 0. Now
instead of solution u ∝ eγt with γ = −2λ/ε (which bounds the time step by ∆t . ε/λ), we get
γ =±

√
1/4m2−2λ/εm−1/2m≈±i

√
2λ/εm, so we need ∆t .

√
εm/λ, i.e., ∆t is not much greater

than the inverse frequency of oscillations of the particle near the bottom of the potential f (u).
If one still applies forward Euler method, then in order for γ to be in the region of absolute stability,

we need |1+γ∆t|< 1, or (1−∆t/2m)2+(∆t)2(2λ/εm−1/4m2)= 1−∆t/m+2(∆t)2λ/εm< 1, which
gives ∆t < ε/2λ. In order to be stable near the bottoms of

√
ε2 +u2 and have ∆t� ε/λ, we need to use

a method of at least 2nd order of accuracy. Even then, if we are just worried about the speed of [linear]
convergence in the small vicinity of the minimum of the function, where the quadratic approximation
would already work, to have the largest gain [in decreast of the function] per step one would choose
∆t ∼ ε/λ, regardless of the numerical method for solving the system of ODEs.

The benefit of introducing the mass m is that [before entering the small vicinity of the minimum
of the function] we descend along the narrow (as ε is small) valleys in a more decisive fashion.
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The system of ODEs for the pixels’ values looks like

for all pixels v m
d2uv
dt2 +

duv
dt

= wv−uv−λ∑
v′

uv−uv′√
ε2 +(uv−uv′)2

where the summation over v′ goes over the pixels neighboring the pixel v.

Example V.2.1: Let us denoise an 64× 64 image of letter “U”. The appropriate values of λ are
related to the typical pixels’ values (from 0 to 255) — the value of λ should not be smaller than the
magnitude of noise. The explicit midpoint (RK2) method was used. With ε = 0.1 (i.e., smaller than
our resolution of pixel’s values, which are inetegers) the value of m≈ 0.2 works well and allows the
time steps larger than ε/λ.

The noise increases from left to right, and the values of λ that reasonably denoise the image (e.g.,
λ = 16 for the left image (where standard deviation of noise is 17) and λ = 128 for the right image
(standard deviation of noise is 102) increase too.

When λ is very large, any changes in the image contribute greatly to the function being minimized,
because of λ‖∇u‖1 term. The fading of the image with λ is visible for, e.g., λ≥ 64. Another thing to
notice is the jump of the pixels’ values in between the top parts of letter “U” sides. This is because
the length between the sides is shorter than the boundary of inner part of letter “U”, and the “optimal”
reconstruction makes the value of the function smaller by funneling part of the change in image to
shorter segment, thus reducing λ‖∇u‖1. (The area in between the sides of “U” is not becoming dark
because of ‖u−w‖2 term which forces the reconstruction u to resemble the original image w).
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λ = 4

λ = 8

λ = 16

λ = 32

λ = 64

λ = 128

λ = 256

Original image (grayscale, 64×64, 8 bits color depth (values are from 0 to 255), letter
“U”, 51 on the letter and 204 on the background), images with added noise (normally
distributed with zero mean, independent from pixel to pixel, with standard deviation
17 (left), 34, 51, 68, 85, and 102 (right), if the value at the pixel after adding the noise
becomes smaller than 0 or larger than 255, then it is clipped). Restorations for several
values of λ are shown, λ = 4 (top), 8, 16, 32, 64, 128, and 256 (bottom).
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Problems and exercises
1. Consider the

image below. You can
think of it as 64× 64
matrix written on
the right. Denoise
it, using p = ν = 1,
ε = 0.1, and some
appropriate value of λ.

255 209 195 202 165 255 227 255 181 169 249 180 228 190 192 255 218 150 139 198 247 197 183 224 191 196 154 239 192 119 238 247 255 255 255 115 152 204 166 142 201 230 250 232 193 142 205 73 192 202 105 181 207 131 239 241 241 216 230 206 121 255 255 187
255 200 236 244 255 213 254 139 255 202 140 255 209 216 255 255 128 170 245 166 219 242 155 190 255 213 126 245 167 186 255 225 255 182 163 215 103 219 141 121 238 129 250 255 194 190 151 204 149 226 205 245 183 122 211 136 216 179 209 237 133 160 121 249
98 196 206 169 250 255 211 225 188 232 232 242 231 145 183 221 105 210 148 245 133 207 216 218 191 216 255 161 156 88 255 247 159 255 198 140 114 201 146 107 255 235 209 101 255 234 250 255 215 255 185 214 255 173 214 208 200 145 111 202 190 109 255 142
173 255 221 195 180 255 234 212 156 214 255 208 191 235 239 246 255 221 171 196 121 255 233 244 251 207 179 168 255 255 255 241 205 147 219 229 252 239 202 77 255 225 234 162 232 159 163 178 198 255 209 251 255 255 118 242 255 225 243 255 232 250 198 166
162 209 236 223 163 156 248 149 250 177 178 108 134 123 215 138 204 185 255 150 215 133 143 172 231 135 219 140 159 162 164 179 75 255 226 65 192 180 220 214 209 255 255 201 210 189 158 178 188 255 207 126 182 126 223 152 212 168 161 241 245 162 220 207
161 255 227 255 185 194 238 179 214 82 198 138 139 255 243 215 186 255 171 212 211 187 113 71 251 242 165 187 242 255 255 138 225 182 255 255 194 234 195 157 248 187 141 163 172 219 239 139 197 174 255 251 203 199 181 214 255 150 191 156 190 182 226 255
204 255 182 227 204 150 255 154 220 181 213 245 208 194 255 242 255 162 255 210 255 173 191 159 156 233 117 194 190 255 236 192 211 231 112 182 203 214 196 238 250 254 226 233 255 215 255 197 255 153 240 117 132 185 110 198 196 180 255 255 245 94 227 144
179 196 193 202 234 125 138 245 199 197 224 255 102 74 224 203 231 162 221 216 137 217 181 214 140 204 255 255 168 230 179 179 225 213 246 224 173 212 146 130 172 255 255 185 232 213 194 183 215 186 123 217 227 226 202 162 172 167 239 160 184 255 215 128
255 227 255 250 235 221 205 129 255 168 255 174 141 136 216 216 202 222 192 255 165 175 104 168 255 167 200 165 174 255 182 255 98 254 245 162 190 255 83 229 246 235 255 179 204 248 169 255 255 193 177 97 255 119 193 178 128 212 255 138 218 208 155 163
230 246 176 234 139 206 223 255 236 230 195 161 224 191 151 172 255 165 165 255 255 186 99 255 161 23 121 86 0 63 135 70 77 0 56 0 42 65 84 236 207 191 141 234 208 255 194 98 119 255 255 121 216 255 160 145 147 251 255 218 180 175 255 203
222 255 220 168 231 189 183 206 106 108 255 159 162 255 205 180 245 201 199 192 199 251 216 200 94 0 14 27 14 57 0 60 105 35 102 16 56 13 21 180 237 162 176 222 88 200 255 192 195 217 255 210 228 217 235 177 151 180 192 255 234 170 209 255
122 114 137 207 255 95 85 227 190 138 168 219 255 255 174 172 164 222 141 193 207 242 195 173 40 18 41 0 51 104 77 0 0 93 0 153 105 59 0 67 193 130 249 145 190 255 255 166 255 106 217 234 255 178 242 142 224 163 171 210 211 230 164 214
152 126 129 205 182 214 199 167 168 252 206 255 174 138 164 184 198 255 145 241 142 255 255 91 22 6 24 119 48 6 52 33 0 42 104 0 143 19 63 56 203 252 234 235 210 105 192 109 168 201 220 118 220 205 202 196 220 163 255 255 214 61 255 255
174 219 166 146 242 129 236 148 226 213 236 162 192 159 186 221 210 211 221 156 255 180 252 35 92 155 134 66 104 51 108 141 112 62 0 39 87 2 80 150 158 250 255 245 178 184 164 138 199 213 153 104 196 164 162 181 220 187 146 146 253 177 100 205
196 243 158 228 192 234 189 201 255 201 211 244 235 152 255 255 169 255 218 198 167 148 127 57 13 0 144 39 28 158 81 32 29 0 31 21 49 36 59 117 149 228 183 164 241 150 243 153 176 255 242 207 255 211 186 162 203 124 251 160 130 152 132 176
109 163 179 255 226 255 97 163 129 203 201 239 255 207 126 192 184 255 216 216 170 207 177 20 113 44 81 0 0 0 25 204 60 147 69 76 41 16 20 108 37 229 219 255 213 255 219 195 255 142 213 194 255 250 122 255 158 152 118 191 179 250 255 135
255 190 146 248 255 234 255 220 170 176 236 140 85 255 229 170 255 205 255 148 255 142 0 77 59 41 35 2 17 0 126 32 20 39 92 51 95 75 105 140 63 75 248 190 147 130 144 178 116 212 175 173 255 200 255 255 231 238 195 248 220 172 213 152
204 176 144 239 218 255 154 164 186 222 132 250 255 140 83 214 238 166 80 201 240 72 82 37 26 67 0 26 14 121 17 25 23 35 90 87 83 70 123 79 129 113 255 212 232 242 193 159 169 199 236 199 210 138 254 242 255 105 255 232 130 219 164 255
223 179 248 219 209 237 223 155 213 197 153 101 249 255 211 183 245 178 186 212 235 237 80 64 54 87 77 77 10 13 30 121 0 19 0 81 99 38 122 86 88 18 81 240 195 101 167 213 214 178 255 226 141 224 125 246 255 172 255 122 170 137 160 172
255 255 212 244 78 205 83 255 206 136 184 163 203 255 255 122 223 113 122 170 139 149 22 51 0 120 115 56 14 21 121 0 162 46 77 67 28 0 11 36 100 61 106 129 146 162 242 255 227 201 173 237 226 119 193 246 169 239 255 184 120 196 163 248
247 214 200 231 114 167 255 247 212 255 226 234 175 235 247 232 255 222 176 162 139 92 26 0 37 1 0 58 26 66 32 169 186 16 89 25 48 0 15 18 38 52 58 187 203 255 139 255 184 252 199 229 183 164 169 248 162 255 255 118 225 213 208 205
184 204 119 201 255 216 204 149 207 177 188 176 225 249 216 164 187 195 165 145 130 119 40 101 66 86 75 114 36 140 96 170 162 0 61 29 90 107 58 6 0 42 91 198 229 190 235 176 255 255 224 248 216 255 205 212 127 252 60 187 250 182 249 246
227 182 182 188 202 255 255 169 235 189 213 215 110 194 255 255 191 136 127 94 103 47 56 72 16 22 23 0 51 31 89 203 167 27 0 53 135 49 29 16 135 2 42 125 203 255 146 145 245 164 255 241 153 202 130 171 196 195 205 167 246 255 115 193
255 233 138 248 221 184 251 151 239 231 247 222 154 214 255 255 255 255 235 248 88 7 69 0 12 39 0 0 8 0 198 231 104 0 2 38 137 149 61 34 32 44 0 0 255 170 226 255 244 231 194 184 132 115 210 233 255 230 222 236 238 180 132 192
224 191 255 255 158 133 74 185 255 171 245 162 228 234 230 255 107 168 222 48 17 111 14 40 106 19 63 0 0 1 224 214 255 233 24 137 27 126 111 50 0 99 30 82 108 172 255 104 172 196 76 214 211 255 171 223 204 255 126 181 213 98 244 193
143 243 186 165 255 145 214 242 173 223 180 187 248 122 254 170 165 184 56 62 32 109 82 50 10 80 148 94 54 61 228 250 195 190 52 75 32 57 21 55 0 104 49 102 86 255 127 255 219 199 255 255 253 77 159 237 242 164 173 216 149 174 255 255
118 162 241 175 204 155 208 231 220 226 255 150 174 138 220 235 147 215 78 8 25 43 109 110 2 119 17 71 81 186 113 246 103 240 91 85 48 0 0 0 80 105 18 0 56 222 236 169 255 217 134 132 223 130 199 164 200 206 238 133 193 152 255 112
123 205 169 233 209 255 247 185 189 255 129 255 206 211 235 255 167 191 133 60 118 18 46 112 109 31 85 93 0 189 255 153 255 230 105 0 28 62 43 46 38 24 63 89 85 105 237 176 171 242 213 166 223 255 135 255 214 255 239 154 231 184 170 183
239 255 218 169 97 254 184 178 242 172 213 126 192 188 128 255 255 142 18 9 105 78 60 86 40 36 0 84 176 105 215 255 149 183 118 53 0 31 58 4 55 73 67 57 113 143 185 233 255 231 234 238 239 251 212 201 168 255 140 239 112 99 196 255
246 230 251 224 184 179 212 223 238 254 168 184 174 117 125 161 208 64 16 39 7 73 33 164 80 32 19 36 105 255 155 255 181 255 188 60 132 35 48 66 4 15 90 121 28 45 170 185 197 184 189 205 95 237 255 142 255 227 223 255 238 154 191 163
250 237 255 255 146 255 203 192 255 173 255 207 196 211 63 186 170 57 116 67 32 18 52 0 56 0 132 33 161 135 193 236 230 235 244 114 17 15 40 62 43 0 29 5 77 5 80 146 214 170 176 248 240 173 155 122 220 142 218 198 235 203 255 187
160 151 236 208 241 255 255 249 190 134 149 205 125 124 228 236 223 25 39 25 42 0 43 77 0 0 4 13 210 195 182 255 107 152 155 194 17 45 9 64 135 37 0 17 108 2 61 217 202 173 182 183 255 121 186 255 255 111 162 130 222 255 219 255
236 191 243 200 232 252 179 116 255 236 255 181 226 254 134 231 145 111 30 0 95 125 127 66 0 11 33 141 245 237 153 252 175 255 141 165 0 71 104 86 28 93 26 0 0 28 76 153 176 255 181 234 199 162 233 217 155 117 180 140 206 255 193 255
255 150 119 218 181 144 138 127 178 255 255 205 140 255 220 121 26 45 90 0 45 77 136 79 0 0 29 190 229 239 170 203 255 232 167 164 89 54 111 27 174 67 0 0 0 24 125 80 229 255 211 255 178 234 174 70 179 197 167 203 210 212 148 171
217 234 182 192 255 208 255 199 75 221 233 197 215 202 117 168 94 0 47 71 24 49 54 0 62 103 88 219 225 148 245 189 255 92 203 255 255 18 112 47 14 60 80 12 50 38 0 142 244 223 164 163 191 173 255 178 227 116 189 132 205 229 144 240
172 207 255 204 151 178 241 233 119 178 222 182 214 255 123 64 19 89 23 53 171 90 29 134 0 61 216 185 245 255 207 199 238 255 102 157 212 16 84 110 68 72 42 71 121 149 65 21 115 186 210 158 190 197 255 229 255 162 231 221 196 191 174 255
229 186 221 159 158 177 191 207 191 222 148 222 143 167 124 39 53 118 85 51 47 61 26 96 0 72 238 142 239 199 221 230 207 222 227 233 235 75 169 26 24 74 84 69 47 39 21 49 74 197 206 210 189 195 150 183 189 255 211 239 211 255 205 223
196 216 225 155 193 230 250 197 239 233 255 241 188 247 69 75 111 89 6 0 78 23 138 7 82 179 168 200 222 221 183 209 206 219 164 193 255 122 52 24 63 14 94 85 36 97 89 72 92 201 235 244 174 218 179 177 204 202 255 140 199 225 179 168
255 215 154 188 208 100 215 255 255 162 222 191 165 151 81 34 37 0 37 90 30 124 0 100 105 103 255 153 204 255 112 185 164 176 255 148 206 249 132 16 139 21 50 25 68 28 119 93 0 126 215 198 210 130 240 89 98 137 207 207 207 126 214 145
200 176 12 177 186 177 209 255 255 164 172 228 191 119 35 79 0 42 106 6 60 4 59 157 133 72 15 39 56 0 28 49 90 0 60 21 94 37 47 18 28 67 76 29 67 74 28 36 0 55 66 243 192 255 255 58 158 146 181 98 167 240 62 195
224 245 198 189 243 196 187 255 143 192 175 125 81 0 43 69 28 95 63 31 116 9 91 110 0 5 37 69 135 102 110 3 70 27 64 119 0 62 82 60 81 37 79 125 175 58 19 141 134 82 124 255 255 255 234 145 127 205 247 209 214 214 245 120
219 235 221 255 205 178 217 242 255 158 245 180 122 32 53 52 103 0 78 79 83 0 138 97 86 41 0 104 154 76 0 47 0 88 53 55 14 84 65 112 27 106 190 59 0 27 90 0 23 117 185 217 243 196 255 172 185 205 254 255 211 250 110 176
168 137 135 157 253 197 238 191 178 131 139 195 217 74 0 0 136 25 48 34 78 29 0 34 138 23 34 50 47 0 0 56 5 43 0 135 66 52 22 48 108 65 0 0 111 0 0 37 21 0 118 154 139 196 231 191 136 176 141 135 255 155 174 225
205 189 113 169 255 136 206 193 171 164 233 159 72 47 53 52 111 97 11 63 37 26 55 96 68 40 82 6 69 78 2 70 76 6 38 20 123 165 85 51 30 23 35 110 64 121 90 99 43 71 0 202 251 224 239 186 203 218 179 245 184 255 246 186
184 151 172 255 135 219 184 176 210 192 233 161 44 57 198 26 0 45 54 1 0 48 26 0 11 37 0 40 16 0 83 7 37 124 118 56 129 61 0 34 21 101 36 70 36 0 72 0 0 112 132 77 193 150 192 241 178 190 198 222 142 255 215 224
223 200 157 131 211 255 222 243 149 255 212 129 0 66 0 11 0 134 50 173 7 0 85 67 67 62 102 153 132 53 18 190 138 150 4 112 120 25 48 65 0 88 61 54 0 65 107 56 44 3 53 0 134 194 217 255 161 120 212 255 193 79 194 200
243 145 172 137 208 243 223 158 197 236 222 57 91 123 0 92 83 48 40 47 117 29 42 0 61 114 85 91 43 70 4 0 103 0 5 15 121 0 26 32 99 27 107 56 27 0 64 10 82 0 0 2 179 188 186 216 222 251 238 255 158 191 204 224
184 79 188 241 133 190 200 233 243 137 106 0 47 66 75 0 77 33 144 0 60 132 45 16 0 67 4 70 90 32 88 148 81 73 47 0 58 83 0 103 32 40 34 31 0 67 56 78 58 5 11 0 140 226 159 250 195 208 195 225 172 190 255 231
255 221 140 108 229 229 255 165 255 255 115 17 41 157 50 57 33 81 54 26 79 147 137 183 227 244 164 255 248 171 176 180 255 243 174 216 218 238 225 255 166 146 68 81 13 12 24 32 40 9 0 65 54 149 135 179 119 255 219 255 146 206 179 211
152 214 167 171 143 255 187 190 227 194 0 29 29 0 0 0 143 38 19 0 0 159 236 177 198 239 221 207 194 238 192 189 219 229 254 223 213 193 237 213 119 136 89 17 39 49 24 67 113 0 47 15 86 171 175 168 255 132 255 255 182 209 255 227
144 164 107 184 179 200 239 248 214 0 158 68 0 34 43 82 40 20 51 90 62 169 255 255 255 160 217 179 179 167 181 255 255 208 207 244 181 255 208 216 181 249 185 77 60 0 80 19 64 84 94 82 113 13 122 104 228 175 207 255 255 206 184 123
130 195 134 184 253 185 176 221 160 22 27 60 85 49 41 126 0 15 155 0 191 170 255 244 189 182 183 226 194 198 136 239 183 255 216 234 255 153 176 255 254 255 182 0 72 59 33 65 124 13 27 27 105 23 191 190 195 214 255 141 126 242 251 255
110 242 156 163 255 193 204 213 198 31 28 135 34 40 74 37 63 50 83 122 172 126 183 191 228 255 201 191 163 255 199 204 195 198 186 240 121 84 193 183 113 255 248 91 60 44 0 149 104 50 62 34 112 107 189 202 166 91 173 255 184 221 148 159
199 189 209 119 224 140 216 126 130 71 115 62 80 79 16 69 97 36 119 0 172 52 207 204 141 211 255 176 166 218 241 228 138 217 211 250 153 224 141 255 241 195 183 162 21 70 3 53 0 113 50 5 94 56 41 195 125 255 87 232 206 156 182 241
255 222 255 208 171 148 250 115 199 47 118 41 92 84 62 0 66 21 43 2 237 142 255 255 140 255 215 229 162 213 249 225 235 224 206 79 197 157 255 186 206 163 152 107 19 132 2 106 35 144 0 104 0 39 94 143 191 248 202 243 158 172 212 82
243 155 255 143 175 218 179 148 105 75 62 69 43 101 84 38 91 61 166 201 177 255 126 255 190 195 231 250 206 207 173 207 186 197 124 255 181 190 168 84 163 213 255 185 187 44 26 81 98 43 15 98 86 0 0 56 194 236 222 209 194 166 174 227
135 216 255 242 82 223 188 168 236 65 139 155 253 146 163 255 189 255 236 201 205 238 255 177 172 226 229 171 231 206 231 208 101 142 170 214 245 176 252 216 225 205 255 255 177 255 255 248 255 255 181 209 199 234 121 220 137 205 255 103 112 147 225 176
183 117 127 146 247 186 255 116 180 203 132 222 143 212 77 235 194 183 160 155 197 206 215 161 178 125 153 224 118 185 198 255 255 128 193 255 226 128 131 230 255 255 195 170 252 255 234 122 255 255 213 255 220 177 187 255 255 232 241 219 255 155 171 138
218 255 142 168 215 140 170 153 149 140 102 186 255 233 143 255 166 185 207 255 197 224 220 124 183 159 224 112 235 137 179 125 171 232 134 245 203 225 246 211 207 214 231 190 222 123 255 239 194 183 255 134 218 255 255 162 255 228 171 225 197 255 162 156
146 240 131 230 163 213 253 255 153 221 179 221 233 245 183 159 136 242 255 211 216 214 140 188 155 217 186 224 179 183 208 240 223 154 164 255 255 19 169 191 139 159 204 69 216 255 177 227 153 219 235 237 92 238 255 255 255 255 121 111 220 254 208 255
184 138 255 212 226 189 120 198 255 235 205 255 104 179 255 255 201 158 234 123 222 164 160 117 239 236 210 249 238 220 194 145 245 251 124 140 255 139 255 237 197 223 212 255 255 242 210 160 168 190 255 255 169 226 247 255 104 199 133 214 206 255 186 194
253 225 253 209 221 218 249 232 255 255 255 85 197 184 255 142 255 190 168 111 158 182 158 168 186 213 110 110 42 133 179 255 179 197 226 97 226 182 255 108 164 255 198 227 167 243 249 237 84 164 165 255 255 169 105 203 153 185 131 175 82 186 255 150
234 207 230 242 222 158 255 247 172 179 138 178 162 255 221 213 159 235 224 197 255 204 140 219 254 209 178 237 255 255 200 208 206 231 81 255 170 255 201 175 83 255 197 176 220 255 196 201 165 197 197 121 206 157 171 227 159 150 174 166 160 224 199 203
186 255 255 190 240 109 206 176 203 230 255 255 255 255 255 137 210 144 235 252 241 103 255 243 106 215 200 152 255 119 255 204 255 193 224 159 203 128 174 163 189 211 149 179 219 137 251 196 229 255 194 172 141 124 255 222 255 255 191 149 166 183 229 174

21 Barrier method
(The idea of barrier method is similar to the idea of introducing the auxiliary functon ft(xxx) =

f (xxx)+ t ∑i h2
i (xxx).) Consider we want to minimize the function f (xxx) subject to inequality constraints

gi(xxx)≤ 0. This problem is equivalent to [unconstrained] minimization of f (xxx)+∑i I−
(
gi(xxx)

)
, where

I−(g) is an indicator function

I−(g) =
{

0, g≤ 0
+∞, g > 0

Let us substitute the function I−(g) by, e.g., Lt(g) ..=−(1/t) ln(−g) (and, e.g., Lt(g) = +∞ if g ≥ 0)
— the so called logarithmic barrier. The larger t is, the better Lt(g) resembles I−(g), so we can hope
that the point of minimum of ft(xxx) ..= f (xxx)+∑i Lt

(
gi(xxx)

)
is close to the solution of our [constrained]

optimization problem.
Example 21.1: Consider minimizing L2(x,y) = (x−1)2+(y−1)2 subject to y2−x2+2x3/3≤ 0.

We introduce the barrier and find the minimum by damped Newtom method:

function [X] = newton_L2_ineq(X, t)
g = @(x) ((x(2))ˆ2 - (x(1))ˆ2 * (1. - 2. * x(1) / 3.));
f = @(x) ((x(1) - 1.)ˆ2 + (x(2) - 1.)ˆ2 - log(-g(x)) / t);
while (1 > 0)

F = f(X);
x = X(1); y = X(2); G = yˆ2 - xˆ2 + 2. * xˆ3 / 3.;
dF = 2. * [x - 1.; y - 1.] - 2. * [xˆ2 - x; y] / (t * G);
if (norm(dF) < 1.e-8)

break;
end
ddF = [0., 0.; 0., 2. + 4. * yˆ2 / (t * Gˆ2) - 2. / (t * G)];
ddF(1, 2) = 4. * (xˆ2 - x) * y / (t * Gˆ2); ddF(2, 1) = ddF(1, 2);
ddF(1, 1) = 2. + 4. * (xˆ2 - x)ˆ2 / (t * Gˆ2) - (4. * x - 2.) / (t * G);
d = -ddF \ dF;
while ((f(X + d) >= F) || (g(X + d) >= 0.))

d = d / 2.;
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end
X = X + d;

end

octave:1> format long; format compact
octave:2> newton_L2_ineq([0.5; 0.], 1.)’
ans =

1.000000000000117e+00 2.213803260348214e-01

octave:3> newton_L2_ineq([0.5; 0.], 10.)’
ans =

1.000000000000000e+00 4.879092568824754e-01

octave:4> newton_L2_ineq([0.5; 0.], 100.)’
ans =

9.999999999999998e-01 5.659458736827376e-01

octave:5> newton_L2_ineq([1.; 0.5659458736827376], 100000.)’
ans =

1.000000000000000e+00 5.773384395149100e-01

octave:6> 1. / sqrt(3.)
ans = 5.773502691896258e-01

The larger is the value of t, the closer is the position of the minimum of ft(x,y) = (x− 1)2 +(y−
1)2− (1/t) ln

(
x2− y2−2x3/3

)
to the exact position (x∗,y∗) = (1,1/

√
3).

Problems and exercises
1. Minimize the function L2(x,y) = (x−1)2 +(y−1)2 subject to y2 + x3 ≤ 0.
2. Minimize the function C110(x1,x2, ...,x55,y1,y2, ...,y55) ..= ∑

56
i=1(yi−1 + yi)/2 = 1

2 +∑
55
i=1 yi sub-

ject to 55 inequality constraints yi ≥ 0, i = 1, 2, ..., 55, and 56 equality constrains (xi− xi−1)
2 +

(yi− yi−1)
2 = 0.032, i = 1, 2, ..., 56. Here for convenience dummy [non-]variables x0 = y0 = 0 and

x56 = y56 = 1 are introduced.8

22 Linear programming
Example 22.1: Consider a problem of minimizing a linear function, e.g., −x−2y, in the domain

x≥ 0, y≥ 0, x+3y≤ 9, x+ y≤ 5.

[...]/teaching/2020-1/math_575b/notes/linear_programming$ cat example_1_simplex.c
#include <stdio.h>
#include <glpk.h>
int main(void) { glp_prob *lp; int ia[5], ja[5]; double x, y, ar[5];

lp = glp_create_prob(); glp_set_obj_dir(lp, GLP_MIN);
glp_add_rows(lp, 2); glp_add_cols(lp, 2);
glp_set_col_bnds(lp, 1, GLP_LO, 0., 0.); /* 0 <= x */
glp_set_col_bnds(lp, 2, GLP_LO, 0., 0.); /* 0 <= y */

8 The problem is about the shape of a flexible chain of 56 segments with length 0.03 (so the chain’s length is
√

2 <
L = 1.68 = 56 ·0.03 < 2) with its ends at the points (0,0) and (1,1) in xy-plane. The function C110 is the potential energy
in the gravity field. The line y = 0 is the ground level, and the chain can not go below it.
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glp_set_obj_coef(lp, 1, -1.); glp_set_obj_coef(lp, 2, -2.); /* min -x - 2 y */

ia[1] = 1; ja[1] = 1; ar[1] = 1.; /* x + 3 y <= 9 */
ia[2] = 1; ja[2] = 2; ar[2] = 3.;
glp_set_row_bnds(lp, 1, GLP_UP, 0., 9.);
ia[3] = 2; ja[3] = 1; ar[3] = 1.; /* x + y <= 5 */
ia[4] = 2; ja[4] = 2; ar[4] = 1.;
glp_set_row_bnds(lp, 2, GLP_UP, 0., 5.);
glp_load_matrix(lp, 4, ia, ja, ar); glp_simplex(lp, NULL);

x = glp_get_col_prim(lp, 1); y = glp_get_col_prim(lp, 2);
printf("x = % 22.16e\ny = % 22.16e\n", x, y);
glp_delete_prob(lp); return 0; }

[...]/teaching/2020-1/math_575b/notes/linear_programming$ cc example_1_simplex.c
-lglpk ; ./a.out
GLPK Simplex Optimizer, v4.65
2 rows, 2 columns, 4 non-zeros

* 0: obj = 0.000000000e+00 inf = 0.000e+00 (2)

* 2: obj = -7.000000000e+00 inf = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
x = 2.9999999999999996e+00
y = 2.0000000000000000e+00
[...]/teaching/2020-1/math_575b/notes/linear_programming$

Here is the same linear program solved by scipy.optimize.linprog from SciPy:

[...]/teaching/2020-1/math_575b/notes/linear_programming$ cat example_1.py
from scipy.optimize import linprog
print(linprog([-1., -2.], A_ub = [[1., 3.], [1., 1.]], b_ub = [9., 5.]))
[...]/teaching/2020-1/math_575b/notes/linear_programming$ python3 example_1.py

con: array([], dtype=float64)
fun: -7.0

message: ’Optimization terminated successfully.’
nit: 3

slack: array([0., 0.])
status: 0

success: True
x: array([3., 2.])

[...]/teaching/2020-1/math_575b/notes/linear_programming$

Example 22.2: Consider fitting the cloud of 5 points S5 =
{
(−2,−3), (−1,−1), (0,5), (2,5), (3,1)

}
by y = ax+b line, with maxi

∣∣axi+b−yi
∣∣ being minimized. The problem of fitting in L∞ sense could

be written as a linear program

minimize d subject to −d ≤ axi +b− yi ≤ d for all i

[...]/teaching/2020-1/math_575b/notes/linear_programming$ cat example_2.c
#include <stdio.h>
#include <glpk.h>
#define MAT(I, J, A) ia[m] = I; ja[m] = J; ar[m] = A; m++;
int main(void) { glp_prob *lp; int i, k, m, ia[31], ja[31]; double a, b, ar[31];

double xy[5][2] = {{-2., -3.}, {-1., -1.}, {0., 5.}, {2., 5.}, {3., 1.}};
lp = glp_create_prob(); glp_set_obj_dir(lp, GLP_MIN);
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glp_add_rows(lp, 10); glp_add_cols(lp, 3);
for (i = 1; i <= 3; i++) glp_set_col_bnds(lp, i, GLP_FR, 0., 0.);
glp_set_obj_coef(lp, 1, 0.); glp_set_obj_coef(lp, 2, 0.);
glp_set_obj_coef(lp, 3, 1.);

for (m = 1, i = 0; i < 5; i++) {
k = 2 * i + 1; MAT(k, 1, xy[i][0]); MAT(k, 2, 1.); MAT(k, 3, -1.);
glp_set_row_bnds(lp, k, GLP_UP, 0., xy[i][1]);
k = 2 * i + 2; MAT(k, 1, xy[i][0]); MAT(k, 2, 1.); MAT(k, 3, 1.);
glp_set_row_bnds(lp, k, GLP_LO, xy[i][1], 0.); }

glp_load_matrix(lp, m - 1, ia, ja, ar); glp_simplex(lp, NULL);

a = glp_get_col_prim(lp, 1); b = glp_get_col_prim(lp, 2);
printf("a = % 22.16e\nb = % 22.16e\n", a, b);
glp_delete_prob(lp); return 0; }

[...]/teaching/2020-1/math_575b/notes/linear_programming$ cc example_2.c -lglpk
[...]/teaching/2020-1/math_575b/notes/linear_programming$ ./a.out
GLPK Simplex Optimizer, v4.65
10 rows, 3 columns, 28 non-zeros

0: obj = 0.000000000e+00 inf = 1.500e+01 (5)
5: obj = 3.200000000e+00 inf = 0.000e+00 (0)

OPTIMAL LP SOLUTION FOUND
a = 8.0000000000000016e-01
b = 1.8000000000000000e+00
[...]/teaching/2020-1/math_575b/notes/linear_programming$

Example 22.3: Consider fitting the cloud of 5 points S5 by y = ax+b line, with ∑i
∣∣axi +b− yi

∣∣
being minimized. The problem of fitting in L1 sense could be written as a linear program

minimize ∑
i

di subject to −di ≤ axi +b− yi ≤ di for all i

[...]/teaching/2020-1/math_575b/notes/linear_programming$ diff -tyW 156 --suppre
ss-common-lines example_2.c example_3.c

glp_add_rows(lp, 10); glp_add_cols(lp, 3); |
glp_add_rows(lp, 10); glp_add_cols(lp, 7);
for (i = 1; i <= 3; i++) glp_set_col_bnds(lp, i, GLP_FR, 0., 0.); |
for (i = 1; i <= 7; i++) glp_set_col_bnds(lp, i, GLP_FR, 0., 0.);
glp_set_obj_coef(lp, 3, 1.); |
for (i = 3; i <= 7; i++) glp_set_obj_coef(lp, i, 1.);

k = 2 * i + 1; MAT(k, 1, xy[i][0]); MAT(k, 2, 1.); MAT(k, 3, -1.); |
k = 2 * i + 1; MAT(k, 1, xy[i][0]); MAT(k, 2, 1.); MAT(k, i + 3, -1.);
k = 2 * i + 2; MAT(k, 1, xy[i][0]); MAT(k, 2, 1.); MAT(k, 3, 1.); |
k = 2 * i + 2; MAT(k, 1, xy[i][0]); MAT(k, 2, 1.); MAT(k, i + 3, 1.);

[...]/teaching/2020-1/math_575b/notes/linear_programming$ cc example_3.c -lglpk
[...]/teaching/2020-1/math_575b/notes/linear_programming$ ./a.out
GLPK Simplex Optimizer, v4.65
10 rows, 7 columns, 28 non-zeros

0: obj = 0.000000000e+00 inf = 1.500e+01 (5)
4: obj = 1.000000000e+01 inf = 0.000e+00 (0)

* 7: obj = 1.000000000e+01 inf = 0.000e+00 (0)
OPTIMAL LP SOLUTION FOUND
a = 2.0000000000000000e+00
b = 1.0000000000000000e+00
[...]/teaching/2020-1/math_575b/notes/linear_programming$
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Part VI

Applied probability
23 Generating pseudo-random numbers

linear congruential generators, RANDU (bad pseudo-random numbers generator)
TestU01, KISS: a bit too simple
GNU GSL RNGs
From now on let us assume that we have an access to a generator of uniformly distributed on [0,1)

random numbers. Different trials of this generator are assumed to be independent.
Example 23.1: Let us construct a generator of random numbers with distribution function

fX(x) =


1+ x, −1≤ x≤ 0
1− x, 0≤ x≤ 1
0, otherwise

FX(x) =


0, x ≤−1
(1+ x)2/2, −1≤ x ≤ 0
1− (1− x)2/2, 0≤ x ≤ 1
1, 1≤ x

x

fX(x)

0 x

FX(x)

0

The 1st idea is to use the expression for F−1
X :

x ..=

{
−1+

√
2u, u≤ 1/2

1−
√

2(1−u), u≥ 1/2

#include <stdio.h>
#include <math.h>
#include <gsl/gsl_rng.h>
int main(void) { gsl_rng * RNG; int i; double u, x;
RNG = gsl_rng_alloc(gsl_rng_ranlux389);

for (i = 0; i < 2000000; i++) { u = gsl_rng_uniform(RNG);
if (u < 0.5) x = sqrt(2. * u) - 1.; else x = 1. - sqrt(2. * (1 - u));
printf("% 22.16e\n", x); }

gsl_rng_free(RNG); return 0; }

The 2nd idea is to notice that Y ..= min(u1,u2) is distributed according to FY (y) = 2(1− y) for
0≤ y≤ 1. We set x ..= sign(2u3−1) ·min(u1,u2). This way we use three uniform numbers u1, u2, u3
to form one x, but the functions are simpler.
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#include <stdio.h>
#include <math.h>
#include <gsl/gsl_rng.h>
int main(void) { gsl_rng * RNG; int i, j; double u[3], x;
RNG = gsl_rng_alloc(gsl_rng_ranlux389);

for (i = 0; i < 1000; i++) {
for (j = 0; j < 3; j++) u[j] = gsl_rng_uniform(RNG);
x = u[0]; if (u[1] < x) x = u[1]; x = copysign(x, 2. * u[2] - 1.);
printf("% 22.16e\n", x); }

gsl_rng_free(RNG); return 0; }

fX+Y (z) =
∫

dxdy fX(x) fY (y)δ(x+ y− z) =
(

fX ∗ fY
)
(z)

The 3rd idea is to notice that u1+u2−1 (like the sum of two dice rolls) would be distributed in the
desired way. This can also be rewritten as u1− (1−u2), and as u2 and 1−u2 have same distribution,
let us generate x as x ..= u1−u2:

#include <stdio.h>
#include <math.h>
#include <gsl/gsl_rng.h>
int main(void) { gsl_rng * RNG; int i, j; double u[2], x;
RNG = gsl_rng_alloc(gsl_rng_ranlux389);

for (i = 0; i < 2000000; i++) {
for (j = 0; j < 2; j++) u[j] = gsl_rng_uniform(RNG);
x = u[0] - u[1]; printf("% 22.16e\n", x); }

gsl_rng_free(RNG); return 0; }

The 4th idea is the rejection method due to John von
Neumann. Consider we have the desired density distribu-
tion function fX(x) confined in a rectangle, with the share
of the area under the fX being not small. We can throw
a point uniformly distributed in the rectangle by throwing
two uniform numbers u1 and u2. We then check whether
the point in the rectangle is below the density fX(x), and if
not, then we reject it and try again. In the case of success
the horizontal coordinate is x.

rejected

accepted

x

y

0

#include <stdio.h>
#include <math.h>
#include <gsl/gsl_rng.h>
double f_X(double x) { if ((x <= -1.) || (x >= 1.)) return 0.; else

{ if (x <= 0.) return 1. + x; else return 1. - x; } }

int main(void) { gsl_rng * RNG; int i, j; double u[2], x;
RNG = gsl_rng_alloc(gsl_rng_ranlux389);
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for (i = 0; i < 2000000; i++) {
for (;;) { for (j = 0; j < 2; j++) u[j] = gsl_rng_uniform(RNG);

x = 2. * u[0] - 1.; if (u[1] < f_X(x)) break; }
printf("% 22.16e\n", x); }

gsl_rng_free(RNG); return 0; }

All the 4 methods give the same distribution of the random variable X :
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Example 23.2: Let us construct a generator of random numbers with standard normal distrubu-
tion.

The 1st idea is to use the inverse cumulative distribution function. Here FX(x) = 1√
2π

∫ x
−∞

dy e−y2/2

is related to a so called error function. There is a built-in inverse error function in MATLAB (and
GNU Octave), but not in C’s math.h or even GNU GSL. Let us invert it using the bisection method
(it is not going to be too fast):

#include <stdio.h>
#include <math.h>
#include <gsl/gsl_sf_erf.h>
#include <gsl/gsl_rng.h>
int main(void) { gsl_rng * RNG; int i; double u, x, xl, xr;
RNG = gsl_rng_alloc(gsl_rng_ranlux389);

for (i = 0; i < 1000000; i++) { u = gsl_rng_uniform(RNG);
for (xl = -20., xr = 20.; xr - xl > 1.e-15;)

{ x = 0.5 * (xl + xr); if (gsl_sf_erf_Q(x) < u) xr = x; else xl = x; }
printf("% 22.16e\n", x); }

gsl_rng_free(RNG); return 0; }
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The 2nd idea uses the Cental Limit Theorem. Let us sum 100 (again, this is not too fast) uniformly
distributed numbers, and then shift and rescale the result so that we get a number that is [almost]
normally distrubuted, with zero mean and standard deviation being equal to 1:
#include <stdio.h>
#include <math.h>
#include <gsl/gsl_rng.h>
int main(void) { gsl_rng * RNG; int i, j; double su, x;
RNG = gsl_rng_alloc(gsl_rng_ranlux389);

for (i = 0; i < 1000000; i++) {
for (su = 0., j = 0; j < 100; j++) su += gsl_rng_uniform(RNG);
x= (su - 50.) / sqrt(100. * (1. / 12.)); printf("% 22.16e\n", x); }

gsl_rng_free(RNG); return 0; }

The 3rd idea is exploiting 1
2π

e−(x
2+y2)/2 dxdy = 1

2π
e−r2/2 rdr dθ = e−s ds dθ

2π
, where r =

√
x2 + y2

and s = r2/2. We have exponential distribution for s and uniform one for θ. The code is
#include <stdio.h>
#include <math.h>
#include <gsl/gsl_rng.h>
int main(void) { gsl_rng * RNG; int i, j; double u[2], r, x;
RNG = gsl_rng_alloc(gsl_rng_ranlux389);

for (i = 0; i < 500000; i++) {
for (j = 0; j < 2; j++) u[j] = gsl_rng_uniform(RNG);
r = sqrt(-2. * log(u[0]));
x = r * cos(2. * M_PI * u[1]); printf("% 22.16e\n", x);
x = r * sin(2. * M_PI * u[1]); printf("% 22.16e\n", x); }

gsl_rng_free(RNG); return 0; }

All the 3 methods give the same distribution of the random variable X :
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Problems and exercises
1. Write a random number generator that produces numbers distributed according to density dis-

tribution function
f (x) =

{
exp(x)/(e−1), 0≤ x≤ 1;
0, x < 0 or x > 1.

24 Monte Carlo method
Imagine you have a stochastic differential equation dx/dt = ξ(t), where ξ(t) is a white noise with

correlation function 〈ξ(t1)ξ(t2)〉 = 2Dδ(t1− t2). Then the density distribution function ρ(t,x) of the
random variable x(t) satisfies the so called Fokker–Planck equation ∂ρ(t,x)/∂t =D∂2ρ(t,x)/∂x2. The
quantity D is often called the diffusion coefficient.

One of the solutions of this partial differential equation is ρ(t,x) = exp(−x2/4Dt)/
√

4πDt, with
limt→0+ ρ(t,x) = δ(x). The solution gives the density of x(t) conditioned by x(0) = 0. Notice that
〈x2(t)〉= 2Dt, i.e., x∼

√
Dt.

Imagine we discretized time (with the time step being τ), and x(t), ξ(t) are substituted by their
grid functions xi, ξi+1/2. We would like to write down some kind of update rule xi+1 = xi + τξi+1/2.
What values the noise ξi+1/2 does take? The correlation function 〈ξ(t1)ξ(t2)〉 = 2Dδ(t1− t2) is now
〈ξiξ j〉 = 2Dδi j/τ, i.e., all ξi are independent normally distributed random variables, with standard
deviation

√
2D/τ. Thus the update rule looks like xi+1 = xi +

√
2Dτ · ζ, where ζ on each step is

independently chosen according to the standard normal distribution, f (ζ) = exp(−ζ2/2)/
√

2π. Note
that xi+1− xi ∼

√
τ� τ. This can also be obtained from

〈(
x(t + τ)− x(t)

)2〉
=

t+τ∫
t

dt1

t+τ∫
t

dt2
〈
ξ(t1)ξ(t2)〉=

t+τ∫
t

dt1

t+τ∫
t

dt2 2Dδ(t1− t2) = 2Dτ

The decay of information about the distant past in random process X(t) is often measured by
autocorrelation or autocovariance function

KXX(t1, t2) = E
((

X(t1)−EX(t1)
)(

X(t2)−EX(t2)
))

For stationary process X(t) the quantity EX(t) does not depend on t, while KXX(t1, t2) depends just
on time difference t1− t2. If X(t1) and X(t2) are independent, then KXX(t1, t2) = 0.9 The smaller
KXX(τ = t1− t2), the less dependence we expect between the values of X separated by τ in time.

Example 24.1: Consider a stochastic differential equation dx(t)/dt =−x(t)+ξ(t), where ξ(t) is
white noise, 〈ξ(t1)ξ(t2)〉 = δ(t1− t2). The quantity x(t) is stirred by ξ, otherwise x(t) exponentially

9 The reverse is not true. Consider, e.g., X and Y to be uniformly distributed on the circle X2 +Y 2 = 1. Then
EX = EY = EXY = 0 (so linear correlation coefficient between X and Y is zero), but X and Y are not independet, they are
even functionally dependent.
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decays with rate 1. We have x(t) =
∫ t
−∞

dt ′ e−(t−t ′) ξ(t ′), and Ex(t) = 0, while

Kxx(t1, t2) = Ex(t1)x(t2) =
t1∫
−∞

dt ′1

t2∫
−∞

dt ′2 exp
(
−(t1− t ′1)− (t2− t ′2)

)
Eξ(t ′1)ξ(t

′
2)︸ ︷︷ ︸

δ(t ′1−t ′2)

=

min(t1,t2)∫
−∞

dt ′ exp
(
2t ′− t1− t2

)
= 1

2 exp
(
−|t1− t2|

)
The process x(t) is stationary, and Kxx(t1, t2) depends just on t1− t2.10

The equation can be solved numerically using the update rule xi+1 = e−τxi +
√

τζi+1/2, here τ is
the time step. Here index in ζ just distinguished the independent trials of standard normal distribution.
The statistics of −ζ is the same as of ζ, and Exi = 0. As Eζ = 0, we have Exi+1xi = e−τEx2

i , or
K(τ) = e−τK(0). We have K(2) = Exi+2xi = E

(
e−τxi+1+

√
τζi+3/2

)
xi = e−τK(1) = e−2τK(0). It can

be shown that K(t) = e−tK(0), i.e., correlations between different time values of x decay with rate 1.

import numpy as np; from random import normalvariate
x, dt, corr, N = np.zeros(100200), 0.01, np.zeros(201), 0
x[0], sigma = 0., np.sqrt(dt)
for i in range(1, 100200):

x[i] = (1. - dt) * x[i - 1] + normalvariate(0., sigma)
if (i >= 200):

for j in range(0, 201):
corr[j] += x[i] * x[i - j]

N += 1

print(’# N =’, N)
for j in range(0, 201):

corr[j] /= N
print(j, corr[j])
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10 The reverse is not true. It could be that KXX (t1, t2) = KXX (t1− t2), but the process X(t) is non-stationary.
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Example 24.2: Consider a stochastic differential equation dx(t)/dt = x(t)ξ(t), where ξ(t) is white
noise, 〈ξ(t1)ξ(t2)〉 = 2Dδ(t1− t2). We would like to solve them numerically, producing realizations
of the process x(t). One can come up with, e.g., the following update rules:

Itô: xi+1 = xi +
√

2Dτxi ζi+1/2

Stratonovich: xi+1 = xi +
√

2Dτ
xi + xi+1

2
ζi+1/2

Both seem sane discretizations, but they will produce different dynamics. It is easy to see that in Itô
discretization we have Exi+1 = Exi = x(0). To the contrary, in Stratonovich discretization we have
xi+1 = xi(1 +

√
2Dτζ/2)/(1−

√
2Dτζ/2) = xi(1 +

√
2Dτζ/2)

(
1 +
√

2Dτζ/2 + 2Dτζ2/4 + ...
)
=

xi
(
1+
√

2Dτζ+2Dτζ2/4+2Dτζ2/4+ ...
)
→ xi

(
1+Dτ+

√
2Dτζ

)
. We have Exi+1 = (1+Dτ)Exi,

and Ex(t) = eDtx(0).

Here is a Python script solving dx/dt = xξ using Itô dicretization (D = 1/2):

from math import sqrt; from random import normalvariate
dt = 0.001
for n in range(0, 20):

t, x = 0., 1.
print(t, x)
for i in range(0, 10000):

t, x = t + dt, x * (1. + sqrt(dt) * normalvariate(0., 1.))
print(t, x)

print()
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Here is a Python script solving dx/dt = xξ using Stratonovich dicretization (D = 1/2):

from math import sqrt; from random import normalvariate
dt = 0.001
for n in range(0, 20):

t, x = 0., 1.
print(t, x)
for i in range(0, 10000):
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xi = sqrt(dt) * normalvariate(0., 1.) / 2.
t, x = t + dt, x * (1. + xi) / (1 - xi)
print(t, x)

print()
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Example 24.3: Consider we start the diffusion process (D = 1/2) with x(0) = 1. How the time
T of hitting x = 0 for the first time (i.e., x(T ) = 0, x(t) > 0 for all t < T , or T ..= mint x(t) ≤ 0) is
distributed? This problem can be modeled by the diffusion equation ∂ρ(t,x)/∂t = 1

2 ∂2ρ(t,x)/∂x2

with [absorbing] boundary condition ρ(t,0) = 0 and initial condition ρ(0,x) = δ(x−1). The solution
looks like

ρ(t,x) =
1√
2πt

[
exp
(
−(x−1)2

2t

)
− exp

(
−(x+1)2

2t

)]
We have FT (t) = 1−

∫
∞

0 dx ρ(t,x), and

fT (t) =
dFT (t)

dt
=−

1∫
0

dx
∂ρ(t,x)

∂t
=−1

2

1∫
0

dx
∂2ρ(t,x)

∂x2 =
1
2

∂ρ(t,x)
∂x

∣∣∣
x=0︸ ︷︷ ︸

diffusive flux to the wall

=
exp
(
−1/2t

)
√

2πt3

Here is a “naive” Python script which generates 10000 instances of the random walk, terminating
each time the particle hits x = 0 or when time t exceeds 3, whichever happens first:

from math import sqrt; from random import normalvariate
for i in range(0, 10000):

x, t, dt = 1., 0., 0.0001
while ((x > 0.) and (t < 3.)):

x, t = x + sqrt(dt) * normalvariate(0., 1.), t + dt
print(t)

If we would terminate only when the particle hits x = 0, then sometimes generating an instance of a
random walk would take very long time. It is not surprising, as the expected value of the hitting time
T is either +∞ or [formally] does not exits. The histogram from 104 [and also 106] trials looks like

31



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  0.5  1  1.5  2  2.5

f T
(t

)

t

exp(-1/(2*x)) / sqrt(2*pi*x*x*x)
’hist_3_10000’

’hist_list_1000000’

In order to work with many trials, the trials should be done in a more efficient way. In the “naive”
script we spend too much time if we go far from the wall. There, to speed up the computation, we can
safely do larger in time steps:

from math import sqrt; from random import normalvariate
t, x = [0.], [1.]
while (x[0] > 0.):

dt = x[-1]**2; t.append(t[-1] + dt)
x.append(x[-1] + normalvariate(0., sqrt(dt)))
while (len(t) > 1):

if ((t[1] - t[0] > 0.0001) and ((x[0] + x[1])**2 < 50. * (t[1] - t[0]))):
dt = t[1] - t[0]; t.insert(1, 0.5 * (t[0] + t[1]))
x.insert(1, 0.5 * (x[0] + x[1]) + normalvariate(0., sqrt(dt) / 2.))
if (x[1] < 0.):

del t[2:], x[2:]
else:

print(t[0], x[0])
del t[0], x[0]

Here trajectory is built as needed. If we didn’t hit x = 0 yet, we add a time step that is large enough to
realistically expect a hitting event within the step. (Here it happens with the probability P(z > 1) ≈
0.16.) Next we review an already formed trajectory, trying to fill in the gaps and check whether hitting
x = 0 did happen there. If between the two points of the built trajectory the probability to hit x = 0 is
smaller than about 10−10, we don’t refine the trajectory there any further. (Same if the time difference
between two points is less than 0.0001.)
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If (t1− t0 > 0.0001) and (x0, x1 are not too far from 0) then refine the trajectory:

(t1, x1)

(t0, x0)

(t1, x1)

(t0, x0)

(1
2(t0 + t1), 1

2(x0 + x1)+
1
2
√

t1− t0 ·ζ
)−→

f
x
(

1
2 (t0+t1)

)(x) ∝ exp

(
−
(
x− x(t0)

)2

2 · 1
2(t1− t0)

)
· exp

(
−
(
x− x(t1)

)2

2 · 1
2(t1− t0)

)
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24.1 Importance sampling
Consider we have a random variable X which is distributed with density distribution function

fX(x), and we want to find EA(X), i.e., we want to find what is the average of the quantity A which
depends on X in some way. The simplest application of the Monte Carlo method would be to sample
the distribution fX many (N) times, get values x1, x2, ..., xN , and then eastimate EA(X)≈ 1

N ∑
N
i=1 A(xi).

Sometimes (that of course depends on the statistics of X and the nature of the function A(·)) the
values of X that contribute to EA(X) are quite rare (and we can think of the value of EA(X) as small).
In this case in order to accurately estimate EA(X) the number of samples N needs to be very large, so
that all the relevant values of X were sampled enough many times.

Importance sampling is the technique of speeding up the accurate estimation of EA(X). The idea
is to sample not fX(x), but some other distribution g(x), and write

EA(x) =
∫

dx A(x) fX(x) =
∫

dx
[

A(x)
fX(x)
g(x)

]
g(x)

One can interpret the expression on the right as calculation of the expected value of the quantity
A(x) fX(x)/g(x), where x is distributed with density g(x). If the values of x relevant for the expected
value EA(x) are well covered by the distribution g(x), then in our N samples we would comprehen-
sively contain all the x needed. Each of that values of x would be weighted by an additional [small]
factor fX(x)/g(x).

Example 24.1.1: Consider the exponential diststibution f (x) = e−x, x≥ 0. Let us estimate P(x >
10) = e−10 ≈ 4.54 · 10−5. We have P(x > 10) = EA(x), where A(x) = 1 if x > 10 and A(x) = 0 if
x≤ 10. The function A(x) cuts out the far tail of exponential distribution.
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The simplest application of the Monte Carlo method with N = 106 samples would produce only
about 45 events with x > 10 on average, with standard deviation being ≈

√
45 ≈ 7 events. Thus the

estimation of P(x > 10) would be something like (4.54±0.7) ·10−5.

Here is a Python script which estimates P(x > 10), with the sample size N being one of the two
inputs:

from sys import argv; from math import log, exp; from random import random
X, N, width, catch = 10., int(argv[2]), float(argv[1]), 0.
for i in range(0, N):

x = -width * log(random())
if (x > X):

catch += width * exp((1. / width - 1.) * x)
print(catch / N)

Here g(x) ..= exp
(
−x/width

)
/width, x ≥ 0, i.e., it is an exponential distribution of width width.

When width is large, we often get not small, i.e., > 10 values of x, thus getting more events con-
tributing into our estimation of P(x > 10). Each realization of x > 10 contributes not by 1/N, but by
a smaller amount to P(x > 10), to compensate for the fact that we throw x > 10 more frequently.

Here is a batch of 100 attempts to estimate P(x > 10) by N = 106 sample size, with width = 1
and width= 10:
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exp(-10)

The exact answer exp(−10) is shown by a horizontal line, which is here all covered by points corre-
sponding to width = 10. The accuracy of determining P(x > 10) from the same N = 106 trials, but
the ones adapted to the quantity of interest P(x > 10), is improved a lot.
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Here is how the standard deviation
√

E
((

estimation of P(x > 10) from N = 106 trials
)
− exp(−10)

)2

depends on width:
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It has the minimal value at around width= 10. There the share of samples that result in x > 10 is of
the order of 1 (namely with width= 10 the share is 1/e≈ 0.37).

Another variant (and one can think of many more) of deforming fX(x) −→ g(x) is shifting the
distribution: g(x) = exp

(
shift− x), x ≥ shift. Increasing shift we produce x > 10 events more

often, and out estimation of P(x > 10) is going to be more accurate. At shift= 10 the computation
of P(x > 10) is going to be exact, as the chosen g(x) exactly coinsides with conditional density
fX
(
x
∣∣x > 10

)
. With shift = 10 all the samples will fall into x > 10 region and in the importance

sampling setting will have the same weight: A(x) fX(x)/g(x) = 1 ·exp(−x)/exp
(
shift−x) = e−10.11

When shift > 10 our estimation of P(x > 10) will be underestimating no matter how large is our
sample size — the distribution g(x) does not cover some of the values of x that do contribute to
P(x > 10), namely 10 < x < shift ones.

Example 24.1.2: Consider a stochastic differential equation dx/dt = −x+ εx2 +ξ, where ξ(t) is
white noise with correlation function 〈ξ(t1)ξ(t2)〉 = δ(t1− t2). The parameter ε is small. The white
noise ξ causes x(t) to diffuse. When x is not large, x < 1/ε, there is a tendency to move towards
the origin x = 0. When x > 1/ε, then non-random part of dx/dt is positive, and with high chances
x(t) will move to the right without return (because of εx2 term in dx/dt the trajectory x(t) will reach
x =+∞ in finite time). During any time interval there is a non-zero probability that the particle in its
diffusing process overcomes the tendency to move towards the origin and escapes to large x > 1/ε.
What is the probability per unit time to escape?

This problem is a typical one for which the instanton method works. In order to escape the noise
should push the particle to the right more eagerly than usual. The shape of the noise ξ(t) should be

11 For more complicated situations it may be not that easy to choose g(x) in such a way that importance sampling
produces the exact answer with no fluctuations. We would like to have g(x) being normalized A(x) fX (x) (which is
possible only if A(x)≥ 0 for all x), and we’ll have to compute the normalization factor which is EA(x) itself.
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somewhat optimized for making the particle to escape, any substantial deviation from the optimal
shape would necessitate the increase in noise amplitute, thus greatly reducing the probability of such
noise ξ(t) to appear.

(a) One can write down the noise optimality equations, and then solve them. We want to maximize
the density distribution function of ξ, but the noise ξ(t) should be such that x(t) reaches 1/ε. This can
be written as the following variational problem: We need to find extrema of

L
{

x(t),ξ(t), p(t)
}
=

1
2

∫
dt ξ

2(t)+
∫

dt p(t)
(

dx(t)
dt

+ x(t)− εx2(t)−ξ(t)
)

The noise density f
{

ξ(t)
}

∝ exp
(
−1

2
∫

dt ξ2(t)
)
, so maximizing it means minimizing the integral

inside the exponent. Here p(t) is a Lagrange multiplier for the equality constraint meaning that the
equation for x is satisfied at the moment t. The boundary conditions are x(−∞) = 0 (we start at typical
x not far from the origin) and x(+∞) = 1/ε (we reach the point after which ξ being switched off the
trajectory moves to the right).

Making variation with respect to p, we just reproduce the equation of motion for x. Making
variation w.r.t. ξ, we get ξ(t) = p(t). Variation w.r.t. x produces the equation for p(t): dp/dt =
p(1− 2εx). The equations for x and p produce a Hamiltonian system: H (x, p) ..= 1

2 p2− p(x− εx2),
and dx

dt =
∂H
∂p , dp

dt = −∂H
∂x . On the starting and ending points, (x, p) = (0,0) and (1/ε,0), we have

H = 0, while H as the Hamiltonian does not depend on time. Thus H ≡ 0, and p= 2(x−εx2). This
gives dx

dt = x−εx2 with the solution x(t) = 1
2ε

(
1+ tanh(t/2)

)
(and actually also its shifts in time). We

get ξ(t) = p(t) = 2
(
x(t)− εx2(t)

)
= 1/2εcosh2(t/2). The probability per unit time to escape (with

some accuracy) can be estimated as

P∼ f
{

ξ(t)
}
∼ exp

(
−1

2

∫
dt ξ

2(t)
)
≈ exp

(
− 1

8ε2

∫ dt
cosh4(t/2)

)
= exp

(
− 1

3ε2

)
(b) The density distribution function ρ(t,x) satisfies Fokker–Planck equation

∂ρ(t,x)
∂t

=
∂

∂x

(
1
2

∂

∂x
+ x− εx2

)
ρ(t,x)

If ε = 0 (i.e., dx/dt = −x+ ξ), then ρ(t,x) = exp(−x2)/
√

π is a stationary solution. For any ε > 0
there is no normalizable stationary solution, but one can write down a solution with constant flux:(1

2
∂

∂x + x− εx2)ρ(x) = −J, and ρ(x) = 2J
∫

∞

x dx′ exp
(
−x2 + 2εx3/3+ x′2− 2εx′3/3

)
. (The integral

over x′ converges because of−2εx′3/3 term inside the exponent.) We have ρ(0) = 2J
∫

∞

0 dx′ exp
(
x′2−

2εx′3/3
)
≈ 2J
√

πexp(1/3ε2). (The last integration was calculated by the saddle-point method, the in-
tegrand is cumulated near x′ ≈ 1/ε.) The flux J is small, so ρ(x) tries to be similar to exp(−x2/2)/

√
π

near the origin, with ρ(0) = 1/
√

π, which gives J ≈ exp(−1/3ε2)/2π.

(c) We can directly simulate the SDE dx/dt = x− εx2 +ξ:

from sys import argv; import numpy as np; from random import normalvariate
t, x, dt, eps = 0., 0., 0.01, float(argv[1])
sigma = np.sqrt(dt)
while (x < 2. / eps):

print(t, x)
t, x = t + dt, x + dt * (-x + eps * x**2) + normalvariate(0., sigma)
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and get how x(t) could depends t. Here are 3 realizations for ε = 0.3:
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Here is a Python script that computes average time to escape by naive Monte Carlo, from 1000
trials (for loop over m), parameter ε is supplied from the command line:

from sys import argv; import numpy as np; from random import normalvariate
dt, eps, AVG = 0.01, float(argv[1]), 0.
sigma = np.sqrt(dt)
for m in range(0, 1000):

t, x = 0., 0.;
while (x < 2. / eps):

t, x = t + dt, x + dt * (-x + eps * x**2) + normalvariate(0., sigma)
print(t)
AVG += t

print(’#’, AVG / 1000.)

Here is the graph of average time to escape as a function of ε:
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Let us apply the importance sampling technique in 2 [similar] ways:

[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/importance_sampling/ex_24.1.2$
cat ex_24.1.2_IS1.py
from sys import argv; import numpy as np; from random import normalvariate
dt, eps, a, T = 0.01, float(argv[1]), float(argv[2]), 10.
sigma = np.sqrt(dt)
for m in range(0, 100000):

t, x, compensation = 0., 0., 1.
while ((t < T) and (x < 2. / eps)):

v, dt_xi = -x + eps * x**2, normalvariate(0., sigma)
V = v + a
t, x = t + dt, x + dt * V + dt_xi
compensation *= np.exp((v - V) * (dt_xi - 0.5 * dt * (v - V)))

if (x > 1.5 / eps):
print(compensation / T)

else:
print(0.)

[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/importance_sampling/ex_24.1.2$
diff --suppress-common-lines -tyW 156 ex_24.1.2_IS1.py ex_24.1.2_IS2.py

V = v + a |
V = (1. - a) * v if (v < 0.) else v

[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/importance_sampling/ex_24.1.2$

Here we substitute the update rule xi+1 = xi + vτ +
√

τζ −to→ xi+1 = xi +V τ +
√

τζ, and the
compensation factor is compensation= exp

(
(xi+1− xi− vτ)2/2τ

)/
exp
(
(xi+1− xi−V τ)2/2τ

)
.

The two graphs below correspond to these 2 ways. The second way tries to mimic the in-
stanton from (a), and would correspond to a = 2, it is then the velocity dx/dt is changed from
−x+ εx2 −to→ −x+ εx2 + p = x− εx2.
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Problems and exercises
1. A mouse, starting from�, runs through the maze on the right.

At each step it moves to a neighboring cell that is not separated by a
wall (chosen with equal probability, independently of the past). The
mouse continues moving in this way until it eats the cheese at� (after
that it escapes to the outside), or it is eaten by the cat at�. Find (by
means of your choice, e.g., analytically, or studying eigenvectors of
the corresponding Markov chain transition matrix, or by Monte Carlo
method, etc.) the probability that the mouse escapes.

2. Consider a diffusing particle (with diffusion coefficient D = 1
2 ) inside the triangle x≥ 0, y≥ 0,

and x+ y ≤ 1. The particle starts at x(0) = y(0) = 1
3 . Find the distribution of the hitting the walls of

the triangle time.
3. Consider a random variable X ∼ N(0,1). Use importance sampling to estimate EX20.
4. Consider a Markov chain with transition probabilities T (x,x+1) = 1/3, 0≤ x < N; T (0,0) =

T (x,x−1) = 2/3, 0 < x < N; and T (N,N) = 1. The chain starts from X0 = 0. As T (x,x+1) = 1
3 <

2
3 = T (x,x−1), there is a substantial bias to the left, and typically Xn is kept not too far from 0. There
is [not too large] probability γ per step /unit time to escape / reach the absorbing state N. Find it for
N = 20 by (a) direct simulation of the Markov chain, also (b) speed up the computation of γ by some
kind of importance sampling.

25 Monte Carlo Markov chains (MCMC)
A way to sample an arbitrary distribution using Markov chains was proposed in 1953 by Mitropo-

lis et al.12 and generalized in 1970 by Hastings.13 This is what is known as Metropolis–Hastings
algorithm. The idea of the method is the following:

We want to sample a distribution with density P(x). We would like to form a Markov chain whose
stationary distribution is P(x) by construction, and then simulate it. A simple way to ensure that P(x)
is indeed the stationary distribution of the Markov chain is making it so through detailed balance:

x����
x′����

-
�

A(x′|x) ·T (x′|x)

A(x|x′) ·T (x|x′)

probability flux→ is A(x′|x)T (x′|x)P(x)

probability flux← is A(x|x′)T (x|x′)P(x′)

detailed balance: A(x′|x)T (x′|x)P(x) = A(x|x′)T (x|x′)P(x′) A(x′|x)

A(x|x′)

0

1

1

12 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, E. Teller, Equation of state calculations by fast
computing machines, J. Chem. Phys. 21 (6) 1087 (1953).

13 W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika 57 (1)
97–109 (1970).
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Here T (x′|x) is the distribution of the attempted next state x′ of the Markov chain, given that the
current state is x. The quantity A(x′|x) is the probability that when attempting the transition x→ x′

we would accept it (otherwise we just stay at state x). Obviously, 0 ≤ A ≤ 1, and in order to speed
the dynamics inside the Markov chain we would like to have the acceptance probabilities as large as
possible. That is why the pair

(
A(x′|x),A(x|x′)

)
should lie on the boundary of the square [0,1]2. We

set
A(x′|x) = min

(
1,

P(x′)
P(x)

T (x|x′)
T (x′|x)

)
, notice that if A(x′|x)< 1, then A(x|x′) = 1

Note that the acceptance probabilities A depend only on the ratio of of values of P (and T ). One needs
to know just the shape of P(x), but not its normalization. A version of the algorithm from 1953 did
assume that T (x′|x) = T (x|x′), in this case A(x′|x) = min

(
1, P(x′)/P(x)

)
.

Example 25.1: It is not a practically reasonable thing to do, but let us construct a MCMC for
sampling the uniform on [0,1) distribution. We have P(x) = 1 for 0 ≤ x < 1, otherwise P(x) = 0.
We choose T (x′|x) = exp

(
−(x′− x)2/2σ2)/√2πσ, i.e., x′ = x+σ · ζ. In our MCMC simulation we

always are going to have 0 ≤ x < 1, so P(x) = 1. The acceptance factor is A(x′|x) = 1 if 0 ≤ x′ < 1,
and A(x′|x) = 0 otherwise. Here is a Python code with σ = 0.1:
from random import normalvariate
x, sigma = 0.5, 0.1
for i in range(0, 10000):

print(x)
xp = x + normalvariate(0., sigma)
if ((xp >= 0.) and (xp < 1.)):

x = xp
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A discrete analog of that would be a Markov chain with transition matrix

T̂ =



1
2

1
2 0 0 0 0

1
2 0 1

2 0 0 0
0 1

2 0 1
2 0 0

0 0 1
2 0 1

2 0
0 0 0 1

2 0 1
2

0 0 0 0 1
2

1
2


With probability 1

2 we move either to the left
or to the right. If we try to move to the left
from the most left state, we stay still. Same
for the right end. The stationary distribution
of this MC is

[ 1
6

1
6

1
6

1
6

1
6

1
6

]
.
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What value of σ is the best? We would like the equilibration of the MCMC to be the fastest, i.e., if
xm is the Markov chain state at the mth time step, we would like xm−n and xm to be as independent as
possible for even not so large n. One of the possible measures is the auto-correlation function K(n) =
E
(
xm− 1

2

)(
xm−n− 1

2

)
. We have K(0) = 1/12 as the dispersion of uniform on [0,1) distribution. For

K(1) we have (ξ = σζ):

E
(
x′− 1

2

)(
x− 1

2

)
=

1∫
0

dx

[ −x∫
−∞

dξ
(
x− 1

2

)2
+

1−x∫
−x

dξ
(
x+ξ− 1

2

)(
x− 1

2

)
+

∞∫
1−x

dξ
(
x− 1

2

)2

]
e−ξ2/2σ2

√
2πσ

=

1∫
0

dx
(
x− 1

2

)2
+

1∫
0

dx
(
x− 1

2

) 1−x∫
−x

dξ ξ
e−ξ2/2σ2

√
2πσ

=
1

12
+

1∫
−1

dξ ξ
e−ξ2/2σ2

√
2πσ

min(1,1−ξ)∫
max(0,−ξ)

dx
(
x− 1

2

)

=
1

12
+

1∫
−1

dξ ξ
e−ξ2/2σ2

√
2πσ

[ 1
4 − (−ξ− 1

2)
2

2
χξ<0 +

(1
2 −ξ)2− 1

4
2

χξ>0

]

=
1

12
+

1∫
−1

dξ ξ
e−ξ2/2σ2

√
2πσ

[
ξ|ξ|

2
− ξ

2

]
=

1
12
−

1∫
0

dξ
e−ξ2/2σ2

√
2πσ

ξ
2(1−ξ

)
= K(1)
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Example 25.2: Consider a distribution function F(x) =
√

x/(1+
√

x), x ≥ 0, with density func-
tion P(x) = 1/2

√
x(1+

√
x)2. Let is sample this distribution by Metropolis–Hastings algorithm in 2

different ways:

First, let us choose T (x′|x) = exp
(
−(x′− x)2/2σ2)/√2πσ, with σ = 0.1:

from math import sqrt; from random import random, normalvariate
def P(x):

if (x <= 0.):
return 0.

else:
return 1. / (2. * sqrt(x) * (1 + sqrt(x))**2)

x, sigma = 1., 0.1
for i in range(0, 1000000):

print(x)
xp = x + normalvariate(0., sigma)
if (random() < (P(xp) / P(x))):

x = xp

Second, let us choose T (x′|x) = exp
(
−(x′− x)2/2x2)/√2πx. Here T (x′|x) 6= T (x|x′) here, and

the generalization from 1970 is relevant:

from math import sqrt, exp; from random import random, normalvariate
def P(x):

if (x <= 0.):
return 0.

else:
return 1. / (2. * sqrt(x) * (1 + sqrt(x))**2)

x = 1.
for i in range(0, 1000000):
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print(x)
xp = x + normalvariate(0., x)
if (xp > 0.):

TT = (x / xp) * exp(((xp - x)**2 / 2.) * (x**(-2) - xp**(-2)))
if (random() < (P(xp) / P(x)) * TT):
x = xp
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The largest observed value of x in the MCMC simulation with 106 steps in the first / second way
was 33.36... / about 5 ·107.

25.1 Ising model
See, e.g., W. Janke, Monte Carlo methods in classical statistical physics.
Imagine we have a joint distribution of many random variables P(x1,x2, ...,xN). Gibbs sampling

is a MCMC algorithm that starts from some initial xxx, and then at each step we 1) randomly (or in
some pre-defined order) choose a variable xk from x1, x2, ..., xN ; and 2) set xk according to the

45

https://www.physik.uni-leipzig.de/~janke/Paper/lnp739_079_2008.pdf


conditional distribution P
(
xk
∣∣x1,x2, ...,xk−1,xk+1, ...,xN). Such sampling could be convenient when

the conditional distribution of one (or not so many) variable(s) can be easily computed (while the
whole P(xxx) is not).

Gibbs sampling is a partial case of Metropolis–Hastings algorithm, where the transitional prob-
abilities T (x′|x) are non-zero only if just one variable has different value in the pair of states x and
x′. (One can think that a move is rejected in the Gibbs sampling MCMC, if the value of a variable xk
didn’t change after being chosen according to the conditional distribution.)

Consider a D-dimensional integer lattice ZZZD, with each site nnn = (n1,n2, ...,nD) containing a binary
variable σnnn =±1. The values of all the binary variables, a vector σσσ, form a “state”, and we introduce
the following distribution over the states:

P(σσσ) ..=
exp
(
−E(σσσ)/T

)
Z(T )

, E(σσσ) ..=− ∑
nnn∈ZZZD

D

∑
i=1

σnnnσnnn+eeei

For this expressions to have sense, one should consider them on a finite part of the ZZZD lattice, let us say
of size L, with appropriate boundary conditions. (It is possible to properly define a thermodynamics
limit L→ ∞.) The quantity Z(T ), or so called partition function, is hard to calculate. It is connected
to [Helmholtz] free energy as F =−T lnZ, where T = 1/β is temperature, or Z = ∑i e−βEi = e−βF .

Here is the program in C that samples P(σσσ) for 2D Ising model using Gibbs sampling (which for
Ising model is also called Glauber algorithm/dynamics14 or heat bath algorithm):

S = σnnn+eee1 +σnnn−eee1 +σnnn+eee2 +σnnn−eee2, P(σnnn) =
exp(σnnnS/T )

exp(S/T )+ exp(−S/T )

[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/Ising_model$ ls
Ising.c
[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/Ising_model$ cat Ising.c
#include <stdio.h>
#include <math.h>
#include <gsl/gsl_rng.h>
#define L 256
#define FOR_ALL_SITES for (i = 0; i < L; i++) for (j = 0; j < L; j++)
int main(void) { gsl_rng * RNG; FILE *out; char name[32];
int i, j, t, m, S[L][L], n[L], p[L]; double u, T = 3., E;
RNG = gsl_rng_alloc(gsl_rng_ranlux389); p[0] = L - 1; n[L - 1] = 0;
for (i = 0; i < L - 1; i++) { n[i] = i + 1; p[i + 1] = i; }

FOR_ALL_SITES S[i][j] = gsl_rng_get(RNG) % 2;

for (t = 0; t < 500; t++) { sprintf(name, "%03d.pgm", t);
out = fopen(name, "w"); fprintf(out, "P5 %d %d 255\n", L, L);
FOR_ALL_SITES fputc(255 * S[i][j], out); fclose(out);

for (m = 0; m < 81920; m++) {
i = gsl_rng_get(RNG) % L; j = gsl_rng_get(RNG) % L;
E = 2. * (double)(S[n[i]][j] + S[p[i]][j] + S[i][n[j]] + S[i][p[j]] - 2);
S[i][j] = (gsl_rng_uniform(RNG) < 1. / (1 + exp(-2. * E / T))); } }

14 R. .J. Glauber, Time-dependent statistics of the Ising model, J. Math. Phys. 4 (2) 294–307 (1963).
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gsl_rng_free(RNG); return 0; }
[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/Ising_model$ cc Ising.c -lm -l
gsl ; ./a.out ; ffmpeg -r 25 -f image2 -s 256x256 -i %03d.pgm -vcodec libx264 -c
rf 30 -pix_fmt yuv420p -loglevel error Ising.mp4 ; rm *.pgm ; ls
a.out Ising.c Ising.mp4
[...]/teaching/2020-1/math_575b/notes/Monte_Carlo/Ising_model$

It could be argued that the dynamics arising in this Markov chain is not unreasonable dynamics of the
corresponding would be a system of “spins” (the dynamics in general tries to reduce energy, attemps
to be in thermal equilibrium with temperature T ).

The typical state in the MCMC simulation of the 2D Ising model looks like (left /middle / right is
corresponding to temperature below/at /abobe the phase transition)

T = 2 T = 2.2692 T = 3

Of course, we would be interested in how fast the mixing within the state space is happening. We
do not have any chance to visit a notable share of states, as the number of states is the 2number of spin sites.
We visit a large number of states and hope that it is representative enough for our statistical purposes.
Imagine we look after some quantity A(σσσ) and check how it does depend on time. We can introduce
a so called autocorrelation function

normalized KA(τ) ..=

〈
AtAt+τ

〉
−
〈
At
〉2〈

A2
t
〉
−
〈
At
〉2 , KA(0) = 1

How fast KA(τ) decays with τ is our estimation about how uncorrelated / independent are our samples
of P(σσσ).

Let us choose the quantity S = ∑nnn σnnn — the sum of all the spins. Its average value divided by the
number of spins is called magnetization M. (As KA(τ) is normalized, we have KS(τ)≡ KM(τ).)
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Here is how “average” (I’m starting the MCMC with all spins up) magnetization depends on
temperature T :
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Here is how KS(τ) falls down with τ:
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25.2 Stochastic optimization
Example 25.2.1: Consider V (x) = x2/2−50cosx. To minimize it we can try the gradient descent

method, dx/dt =−dV (x)/dx =−x−50sinx.
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Here is a Python script that updates x according to the rule x(t +dt) ..= x(t)−dt ·V ′(x)+
√

2Ddtζ,
where ζ ∼ N(0,1). The case D = 0 would correspond to standard gradient descent (its ODE formu-
lation with forward Euler method). When D > 0, but γ = 1, we use additive noise in the updates of
x in order to not be stuck in shallow minima of V (x). The larger D is, the deeper are the minima we
can realistically climb out of. In order to eventually converge / freeze, the diffusion coefficient D is
gradually decreased (like in simulated annealing), D(t +dt) ..= γ ·D(t).

from sys import argv
from math import cos, sin, sqrt
from random import normalvariate
def f(x):

return 0.5 * x**2 - 50 * cos(x)
def df(x):

return x + 50 * sin(x)

x, t, dt, D, gamma = 60., 0., 0.01, float(argv[1]), float(argv[2])
best_x, best_f = x, f(x)
print(t, x, f(x), df(x), best_x, best_f)
while (t < 100.):

x, t, D = x - dt * df(x) + normalvariate(0., sqrt(2.*D*dt)), t + dt, gamma * D
if (f(x) < best_f):

best_x, best_f = x, f(x)
print(t, x, f(x), df(x), best_x, best_f)
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γ = 1:
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γ = 0.9998:
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Problems and exercises
1. Using Metropolis algorithm, simulate a Markov chain with P(x) = exp(−x), x≥ 0 density and

transition function T (x′|x) = exp
(
−(x′− x)2/2σ2)/√2πσ (with appropriate acceptance probability

A(x′|x)). Find σ that minimizes Kxx(1) = E(xm− 1)(xm−1− 1), where xm is the state of the Markov
chain at time m.

2. Using either Metropolis algorithm or Glauber dynamics, simulate a MCMC for 2D Ising model
on a L×L torus of binary variables / spins. Compute and plot as a function of temperature T (e.g., for
2≤ T ≤ 2.6) the average value of m(T ) =

∣∣∑nnn σnnn
∣∣/L2 for L = 32, 64, and 128. Is the transition from

non-zero to [almost] zero value of m(T ) becomes sharper for larger L?

26 Message passing /belief propagation
A factor graph (X ,F,E) is a bipartite graph, whose vertices are separated into two groups: variable

vertices X = (x1,x2, ...,xN) and facror vertices F = ( f1, f2, ..., fm). For each factor vertex 1≤ α≤M
let us consider a subset of varible vertices Xα ⊆ X that are connected to fα by an edge. Similarly, for
each 1≤ i≤ N let Fi be the subset of factor vertices that are connedted to i. 15 Let us associate with a
factor graph (X ,F,E) a factorized density distribution function g(X) = (1/Z)∏

M
α=1 fα(Xα), where Z

is the normalization factor ensuring ∑X g(X) = 1.

15 A similar structure would be a hypergraph, where [hyper]edges could connect an arbitrary subset of vertices.
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g(x1,x2,x3,x4) ∝ f1(x1,x3) f2(x1,x2,x3) f3(x2,x4) f4(x4)

The state evolution in Markov chain could be expressed by a factor graph:

Here ft(xt−1,xt) is the transition function with
∫

dxt ft(xt−1,xt) = 1 (or a constant not depending
on xt−1). Inegrating over xt+1xt+2xt+3... we would get the marginal distribution g(x0,x1, ...,xt) ∝

f0(x0) f1(x0,x1) f2(x1,x2)... ft(xt−1,xt).

Imagine we would like to find marginal distributions g(xi)=∑X\xi g(X). To compute them directly
could be prohibitively expensive, as there could be too much terms in the sum. If, e.g., the variables
xi are binary, the the sum has 2N−1 terms.

Belief propagation16 is an approximate algorithm of computing marginals distributions gi(xi) =

∑X\xi g(X). On our factor graph we pass messages from the variable vertices to the factor ones and
back, with the messages being calculated locally at each vertex according to (µ(−1)

i→α
..= 1)

µ(t)
α→i(xi) ..= ∑

xXα\i

fα(Xα) ∏
j∈Xα\i

µ(t−1)
j→α

(x j), µ(t)i→α
(xi) ..= ∏

β∈Fi\α
µ(t)

β→i(xi)

At each iteration the marginal distribution gi(xi) is approximated by gi(xi) ∝ ∏
α∈Fi

µ(t)
α→i(xi). If we put

this expression to the definition of what the messages are, then we get

gi(xi) ∝ µi→α(xi)µα→i(xi) = ∑
xXα\i

fα(Xα) ∏
j∈Xα

µ j→α(x j)︸ ︷︷ ︸
∝gXα(xXα)

g(X) ∝ ∏
α

fα(xXα
) = ∏

α

gXα
(xXα

)

∏
i∈Xα

µi→α(xi)
=

∏
α

gXα
(xXα

)

∏
i−α

gi(xi)

µα→i(xi)

=
∏
α

gXα
(xXα

)

∏
i

(
gi(xi)

)|Fi|−1

26.1 Error correcting codes
A simple example of an error correcting code would be a spelling alphabet, where instead of one

letter we say [through a noisy phone connection] the whole word that starts from it.

16R. Gallager (1963), J. Pearl (1982), D. J. C. MacKay, R. M. Neal (1996)
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Another example is a repetition code, each bit is sent, e.g., 3 times, while on the other end the
decoding is done by majority rule. To transmit “0”, we send “000” through the communication
channel, and decode “000”, “001”, “010”, “100” outputs as “0” (and similarly for “1”). If the prob-
ability of a bit to be flipped by the channel is p� 1, then the error probability after the decoding is
3p2(1− p)+ p3 = 3p2−2p3 ≈ 3p2� p. The probability of error p→ 3p2 can be greatly reduced.

Our whole language is redundant in order for communication to be reliable, and the following
once popular joke is one of many demonstrations of that:

Arocdnicg to rsceearch at Cmabrigde Uinervtisy, it deosn’t mttaer in waht oredr the ltteers in
a wrod are, the olny iprmoatnt tihng is taht the frist and lsat ltteer are in the rghit pcale. The
rset can be a toatl mses and you can sitll raed it wouthit pobelrm. Tihs is buseace the huamn
mnid deos not raed ervey lteter by istlef, but the wrod as a wlohe.

We can read partially incomplete text, correct typos, etc.

In case of a linear binary error correcting code, an encoded (thus longer due to the added redun-
dancy) message can be viewed as a block of N bits taking values 0 and 1. These are the variable
vertices in the corresponding factor graph (often also called Tanner graph of the code). The encoded
message satisfied MPC parity checks, which are some of the factor vertices. Each parity check factor
vertex is connected to the bits that are participating in this parity check. Another N factor vertices
(in case of message distortion by the communication channel to be independent from bit to bit) are
attached in one-to-one fashion to the bits — they correspond to the statistics of the channel output.

The factor nodes corresponding to the parity checks have the function

fα(x1,x2, ...,xk) =

{
1, x1 + x2 + ...+ xk ≡ 0 (mod 2) parity is satisfied
0, x1 + x2 + ...+ xk ≡ 1 (mod 2) parity is not satisfied

This makes the summing over X [with g(X) in mind] going over only such configurations of x1, x2,
..., xN that do satisfy all the parity checks (so called codewords).

In the case of xi, 1 ≤ i ≤ N, being binary variables, taking, e.g., the values 0 and 1, the dis-
tribution of one such variable can be fully described by the so called logarithmic likelihood mi =
(1/2) ln

(
gi(0)/gi(1)

)
. The message passing becomes (here η ..= (1/2) ln

(
µ(0)/µ(1)

)
)17

η
(t)
α→i =

1
2

ln


∑

Xα,parity,xi=0
∏

j∈Xα\i
µ(t−1)

j→α
(x j)

∑
Xα,parity,xi=1

∏
j∈Xα\i

µ(t−1)
j→α

(x j)

 , η
(t)
i→α

(xi) ..= hi + ∑
β∈Fi\α

η
(t)
β→i, m(t)

i
..= hi + ∑

α∈Fi

η
(t)
α→i

η
(t)
α→i = arctanh

(
(Σ0−Σ1)/(Σ0 +Σ1)

)
= arctanh

(
∏

j∈Xα\i
tanhη

(t)
j→α

)

µ(0)ν(0)+µ(1)ν(1)−µ(0)ν(1)−µ(1)ν(0)
µ(0)ν(0)+µ(1)ν(1)+µ(0)ν(1)+µ(1)ν(0)

=
µ(0)−µ(1)
µ(0)+µ(1)

· ν(0)−ν(1)
ν(0)+ν(1)

Example 26.1: Consider a repetition code

17 arctanh(x) = (1/2) ln
(
(1+ x)/(1− x)

)
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The numbers h1, h2, and h3 are logarithmic likeli-
hoods from the output of the communication channel.
Positive /negative value of h means that 0 /1 is more prob-
able. The magnitude of h is corresponding to how much
more probable.

The parity checks f1 and f2 make the only allowed
configurations of bits being “000” and “111”.

[...]/teaching/2020-1/math_575b/notes/message_passing$ cat MP.m
function [eta] = MP(h, eta)

eta11 = h(1);
eta21 = h(2) + eta(4); % eta(4) = eta32
eta22 = h(2) + eta(1); % eta(1) = eta11
eta32 = h(3);
m1 = h(1) + eta21;
m2 = h(2) + eta11 + eta32;
m3 = h(3) + eta22;
[m1 m2 m3]
eta = [eta11, eta21, eta22, eta32];

[...]/teaching/2020-1/math_575b/notes/message_passing$ octave-cli
GNU Octave, version 4.4.1
[... copyright notice and links ...]
octave:1> format compact
octave:2> MP([1, 3, -2], [0, 0, 0, 0])
ans =

4 2 1

ans =
1 3 3 -2

octave:3> MP([1, 3, -2], [1, 3, 3, -2])
ans =

2 2 2

ans =
1 1 4 -2

octave:4> MP([1, 3, -2], [1, 1, 4, -2])
ans =

2 2 2

ans =
1 1 4 -2

Here there are no arctanh(·) functions because the product of tanh(·)’s inside it always contains just
one factor, and “arctanh” and “tanh” eat /kill / cancel each other.
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Example 26.2: Consider a code with 2 bits and 2 parity checks
each connected to both of the bits. The allowed configurations are “00”
and “11”, the parity checks are redundant, i.e., they double each other.
The message passing equations are η

(t)
11 = h1 +η

(t−1)
22 , η12 7→h1 +η21,

η21 7→h2 +η12, and η22 7→h2 +η11, with the decoding output being
m1 = h1 +η21 +η22, m2 = h2 +η11 +η12.

From these equations we have, for example, η11+η22 7→h1+h2+

η11 +η22, which means that η
(t)
11 +η

(t)
22 = t · (h1 +h2).

Part VII

Machine learning
27 Regression

Consider we have a bunch of data of type (xxxi,yi), and we want to come up with a function f (xxx)
such that f (xxxi)≈ yi.

We are not necessarily targeting for f (xxxi) = yi exactly, as the values yi may contain some noise of
measurement error, so we assume that yi is a “true” function ftrue(xxx) distorted in a certain way. In order
to have an idea how well a given approximation f (xxx) works, we need to assume a certain statistics of
the distortion P

(
y
∣∣ ftrue(xxx)

)
. A popular assumption is that yi = ftrue(xxx)+ξi, where ξi ∼ N(0,σ2) is an

additive noise[, and ξi for different i are independent].
Let us say, we decide to choose our function approximating the data from a family of functions

f (xxx,θθθ), where θθθ is the vector of parameters. The task of choosing a good function is now the task of
choosing a suitable vector of parameters θθθ.

One approach to find the values of the parameters θθθ is called maximum likelihood. We set

θθθML
..= argmax

θθθ

N

∏
i=1

P
(
yi
∣∣ f (xxxi,θθθ)

)
︸ ︷︷ ︸

likelihood

, θθθML = argmin
θθθ

N

∑
i=1

(
yi− f (xxxi,θθθ)

)2

︸ ︷︷ ︸
loss function

where (xxxi,yi), i = 1, 2, ..., N is the data from which we estimate θθθ.
The case f (xxx,θθθ) = ∑

M
m=1 θm fm(xxx) is called linear regression. In case of additive Gaussian noise

the maximum likelihood is a least squares problem: θθθML = argminθθθ ∑
N
i=1
(
yi−∑m=1 θm fm(xxxi)

)2, i.e.,
θθθML is found from the miniminization of a quadratic function of θθθ.

Example 27.1: Consider data being generated by a Python script

from math import exp; from random import random, normalvariate
for i in range(0, 1000):

x = 4. * random() - 2.
y = exp(-0.5 * x**2) + normalvariate(0., 0.1)
print(x, y)
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Imagine we take the first 10 points of the data and then try to fit them by the 9th degree polynomial
f (x,θθθ) = ∑

9
m=0 θmxm:

from sys import argv; import numpy as np; from scipy.optimize import minimize
global xy
def loss(theta):

loss, N, M = 0., xy.shape[0], theta.shape[0]
for i in range(0, N):

y = 0.
for m in range(0, M):

y += theta[m] * xy[i, 0]**m
loss += (xy[i, 1] - y)**2

return loss

xy = np.loadtxt(argv[1])
res = minimize(loss, np.zeros(10), method=’BFGS’, jac = None)
print(res.x)
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We then have a situation that is called overfitting. The suggested function f (x,θθθ) is going well through
the points that were used in estimation of θθθ (training data), but does not generalize well to new data.

Here is an example of an application of another model to the data, f (x,θθθ)= θ0 exp
(
−(x−θ1)

2/2θ2
2
)
.

This family of functions contains ftrue(x) = exp(−x2/2) for θ0 = 1, θ1 = 0, and θ2 = 1. Here [non-
linear] regression gives an answer close to ftrue:

[...]/teaching/2020-1/math_575b/notes/regression$ cat gauss.py
from sys import argv; import numpy as np; from scipy.optimize import minimize
global xy
def loss(theta):

if (theta[2] <= 0.):
return 1.e+100

loss, N = 0., xy.shape[0]
for i in range(0, N):

y = theta[0] * np.exp(-(xy[i, 0] - theta[1])**2 / (2. * theta[2]**2))
loss += (xy[i, 1] - y)**2

return loss

xy = np.loadtxt(argv[1])
res = minimize(loss, np.array([2., 2., 2.]), method=’BFGS’, jac = None)
print(res.x)
[...]/teaching/2020-1/math_575b/notes/regression$ python3 gauss.py data_10
[ 1.08778132 -0.06268182 1.01929772]
[...]/teaching/2020-1/math_575b/notes/regression$ python3 gauss.py data_1000
[ 1.00205441 -0.01667168 0.98588332]
[...]/teaching/2020-1/math_575b/notes/regression$

To detect the overfitting, we can divide the data we have to two parts: training data and validation
set. We use the training data to estimate the parameters θθθ. Then we check how large is the loss
function being calculated on the validation set. If the loss function [per data point] on the training
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data is much less then on the validation set, then we have overfitting. If they are comparable, then
f (xxx,θθθ) generalizes to new data.

[...]/teaching/2020-1/math_575b/notes/regression$ cat poly_4.py
from sys import argv; import numpy as np; from scipy.optimize import minimize
global xy
def loss(theta):

loss, N, M = 0., xy.shape[0], theta.shape[0]
for i in range(0, N):

y = 0.
for m in range(0, M):

y += theta[m] * xy[i, 0]**m
loss += (xy[i, 1] - y)**2

return loss

xy = np.loadtxt(’data_500’)
res = minimize(loss, np.zeros(5), method=’BFGS’, jac = None)
print(res.x)
print(’ loss function per data point on training data:’,loss(res.x) / 500.)

xy = np.loadtxt(’data_500_end’)
print(’loss function per data point on validation set:’,loss(res.x) / 500.)

xy = np.loadtxt(’data_1000’)
res = minimize(loss, np.zeros(5), method=’BFGS’, jac = None)
print(res.x)
[...]/teaching/2020-1/math_575b/notes/regression$ python3 poly_4.py
[ 1.00226136 -0.02551919 -0.45139884 0.00918124 0.06167193]
loss function per data point on training data: 0.010732697473740654
loss function per data point on validation set: 0.010292081361308608
[ 0.9908246 -0.01466693 -0.44185825 0.00426412 0.06000264]
[...]/teaching/2020-1/math_575b/notes/regression$
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Problems and exercises
1. Consider data generated by the following Python script:

from math import sin, pi; from random import seed, random, normalvariate
seed(0)
for i in range(0, 1000):

x = 2. * pi * random() - pi
print(x, sin(x) + normalvariate(0., 0.1))

We would like to fit the data by the Mth degree polynomial f (x,θθθ) = ∑
M
m=0 θmxm. Let the loss function

per data point be 1
number of data points ∑i in data

(
yi− f (xi,θθθ)

)2. Proceed with [linear] regression, using as
the training data first N > M points of the whole data [of 1000 points], and use the rest as a validation
set. Find an appropriate value of M (the loss function hardly decreases if you increase M) and the size
of training data that is sufficient to learn optimal θθθ (the loss function per data point on training and
validation sets are comparable).

28 Classification
Let there be several groups of objects. Each group has a certain label l ∈ L, where L is the set of

all possible labels. Each object can be described,e.g., by its numerical features xxx ∈RRRD. We would
like to be able to find the object’s label from its numerical representation — a classification problem.
This can be viewed as a problem of approximation of a function f : RRRD→ L.

Example 28: Consider the points on (x,y)-plane. The points differ in whether they are above
(label “1”) of below (label “0”) the line x/3+ y/2 = 1 or y = 2−2x/3:
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2 - 2 * x / 3

Here is a Python script that generated this data:

from random import normalvariate
def class_true(x, y):
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return 1. if (x / 3. + y / 2. > 1.) else 0.
for n in range(0, 100):

x, y = normalvariate(0, 2.), 2. + normalvariate(0, 2.)
print(x, y, class_true(x, y))

On the training data we have the values (x,y) ∈ RRR2 and also the correct labels.18 This is called
supervised learning (a supervisor provided the labels for us to learn how they are assigned).
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ cat classifier.py
import numpy as np; from scipy.optimize import minimize
global xy, N

def class_true(x, y):
return 1. if (x / 3. + y / 2. > 1.) else 0.

def loss(theta):
loss = 0.
for i in range(0, xy.shape[0]):

f_true = class_true(xy[i, 0], xy[i, 1])
f = theta[0] + theta[1] * xy[i, 0] + theta[2] * xy[i, 1]
f = 1. if (f > 0.) else 0.
loss += (f - f_true)**2

return loss

xy = np.loadtxt(’data_xy’)
res = minimize(loss, np.zeros(3), method=’BFGS’, jac = None)
print(res.x, loss(res.x))
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ python3 classifier.py
[1.03849898e-05 3.46166326e-05 3.63474643e-05] 27.0
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ diff --suppress-common-
lines -tyW 156 classifier.py classifier_10.py
res = minimize(loss, np.zeros(3), method=’BFGS’, jac = None) |
res = minimize(loss, np.array([0., 1., 0.]), method=’BFGS’, jac = None)
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ python3 classifier_10.py
[0. 1. 0.] 33.0
[...]/teaching/2020-1/math_575b/notes/linear_classifier$

Here we try the following change θ0 +θ1x+θ2y−→ θ0 + cos(θ1)x+ sin(θ1)y:
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ diff --suppress-common-
lines -tyW 156 classifier.py class_cos_sin.py

f = theta[0] + theta[1] * xy[i, 0] + theta[2] * xy[i, 1] |
f = theta[0] + np.cos(theta[1]) * xy[i, 0] + np.sin(theta[1]) * xy[i, 1]

res = minimize(loss, np.zeros(3), method=’BFGS’, jac = None) |
res = minimize(loss, np.zeros(2), method=’BFGS’, jac = None)
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ python3 class_cos_sin.py
[0. 0.] 33.0
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ diff --suppress-common-
lines -tyW 156 class_cos_sin.py class_cos_sin_12.py
res = minimize(loss, np.zeros(2), method=’BFGS’, jac = None) |
res = minimize(loss, np.array([1., 2.]), method=’BFGS’, jac = None)
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ python3 class_cos_sin_12.py
[1. 2.] 40.0
[...]/teaching/2020-1/math_575b/notes/linear_classifier$

18 In scripts below just x and y values are read, but there is class true function which returns the correct label.
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Here we make the function, that approximates ftrue(x,y)→{0,}, smooth: f (x,y)..=1/(1+exp(−10ξ),
where ξ ..= θ0 + cos(θ1)x+ sin(θ1)y:
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ cat smooth.py
import numpy as np; from scipy.optimize import minimize
global xy, N

def class_true(x, y):
return 1. if (x / 3. + y / 2. > 1.) else 0.

def loss(theta):
loss = 0.
for i in range(0, xy.shape[0]):

f_true = class_true(xy[i, 0], xy[i, 1])
f = theta[0] + np.cos(theta[1]) * xy[i, 0] + np.sin(theta[1]) * xy[i, 1]
f = 1. / (1. + np.exp(-10. * f))
loss += (f - f_true)**2

return loss

xy = np.loadtxt(’data_xy’)
res = minimize(loss, np.zeros(2), method=’BFGS’, jac = None)
print(res.x, loss(res.x))
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ dif
f --suppress-common-lines -tyW 156 classifier.py smooth.py

f = theta[0] + theta[1] * xy[i, 0] + theta[2] * xy[i, 1] |
f = theta[0] + np.cos(theta[1]) * xy[i, 0] + np.sin(theta[1]) * xy[i, 1]
f = 1. if (f > 0.) else 0. |
f = 1. / (1. + np.exp(-10. * f))

res = minimize(loss, np.zeros(3), method=’BFGS’, jac = None) |
res = minimize(loss, np.zeros(2), method=’BFGS’, jac = None)
[...]/teaching/2020-1/math_575b/notes/linear_classifier$ python3 smooth.py
[-1.67480335 0.99776907] 1.2944486110163806
[...]/teaching/2020-1/math_575b/notes/linear_classifier$
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29 Clustering
Consider there is data /objects xxx1, xxx2, ..., xxxN ∈ RRRD (or of whatever nature). We want to agre-

gate / lump objects into not so many groups, with objects in each group being close in some sense to
each other. This is a task called clustering.

Clustering could be set up as a supervised learning, where clustering labels for some of the objects
are provided by the supervisor / teacher /human. Sometimes the supervisor provides the desired final
number of clusters. Often the clustering algoritgm is to produce the clusters (with their number) on
its own — unsupervised learning.

The number of groups in the end could be fixed or left to be determined from the data. The division
into groups could be strict or in distributional sense (for each object there is a probability / likelihood
to belong to each cluster). It could be allowed to claim that some objects do not belong to any [dense
of well defined] cluster.

There are numerous strategies to cluster data:

• hierarchical clustering

– agglomerative: Initially clusters are data points. Two “closest” points /clusters are found
and then merged, with clusters closeness measure redefined/updated.

– divisive: The whole data is divided /cut into two [large] groups, which are further pro-
cessed.

• setting clustering as an optimization problem, then solving it:

k-means : argmin
C1,C2,...,Ck

k

∑
i=1

∑
xxx∈Ci

‖xxx−µµµi‖2, µµµi
..=

1
|Ci| ∑

xxx∈Ci

xxx

Such discrete optimization problem is typically hard, so approximation are used:

import numpy as np
global xy, mu, label

def assign_labels():
global mu, label
for j in range(0, xy.shape[0]):

best, best_i = 1.e+10, -1
for i in range(0, k):

distance = np.linalg.norm(xy[j] - mu[i])
if (distance < best):

best, best_i = distance, i
label[j] = best_i

def compute_mu():
global mu
for i in range(0, k):

mu[i], n = np.zeros(2), 0
for j in range(0, xy.shape[0]):

if (label[j] == i):
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mu[i], n = mu[i] + xy[j], n + 1
mu[i] /= n

return mu

xy = np.loadtxt(’data_300’)
k, label = 3, [0] * xy.shape[0]
mu = np.random.normal(0., 1., (k, 2))
assign_labels()
while (1 > 0):

compute_mu()
old_label = label
assign_labels()
if (old_label == label):

break
for j in range(0, xy.shape[0]):

print(xy[j, 0], xy[j, 1], label[j])
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Here is a [not at all optimized] Python script that implements a [hierarchical] agglomerative
method of clustering called complete-linkage clustering:

import numpy as np
global xy, N, label, dist, lab_d

xy = np.loadtxt(’data_300’)
N = xy.shape[0]
dist, label = np.zeros((N, N)), np.arange(N)
for i in range(0, N - 1):

for j in range(i + 1, N): # i < j
dist[i, j] = np.linalg.norm(xy[i] - xy[j])

while (np.unique(label).shape[0] > 3):
lab_d = np.zeros((N, N))
for i in range(0, N - 1):

for j in range(i + 1, N): # i < j
if (label[i] != label[j]):

smaller, greater = label[i], label[j]
if (smaller > greater):

smaller, greater = greater, smaller
if (lab_d[smaller, greater] < dist[i][j]):

lab_d[smaller, greater] = dist[i, j]
best = 1.e+10
for i in range(0, N - 1):

for j in range(i + 1, N): # i < j
if (label[i] != label[j]):

smaller, greater = label[i], label[j]
if (smaller > greater):

smaller, greater = greater, smaller
if (lab_d[smaller, greater] < best):

best_s, best_g, best = smaller, greater, lab_d[smaller, greater]
label[np.where(label == best_g)] = best_s
print(label)

for i in range(0, N):
print(xy[i, 0], xy[i, 1], label[i])
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Problems and exercises
1. Consider data generated by the following Python script:
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from random import seed, random
seed(0)
n = 0
while (n < 1000):

x, y = 2. * random() - 1., 2. * random() - 1.
r2 = x**2 + y**2
if ((r2 < 1.) and ((r2 < 0.36) or (r2 > 0.64))):

print(x, y)
n += 1

We want to divide the data points into 2 clusters. Decide which method, k-means, single-linkage,
or complete-linkage clustering is more suitable for task. Proceed with the clustering and plot the 2
resulting clusters.
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