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Preface

The book grew out of a one-semester course, initially intended as a parting
gift to those leaving physics for greener pastures and wondering what is worth
taking with them. Statistically, most of the former physicists use statistical
physics, because this discipline (and this book) answers the most frequent
question: How much can we say and do about something we do not know?
Of course, the art of bluffing without blushing was perfected by people in
many trades and walks of life. So when the course was taught in different
institutions and countries, it was attended by a motley mix of students, post-
docs and faculty from physics, mathematics, engineering, computer science,
economics and biology. Eventually, it evolved into a meeting place where
we learn from each other using the universal language of information theory,
which is a statistical physics in disguise, albeit transparent.

The simplest way to answer the above question is called thermodynamics.
It is a phenomenology that deals only with visible manifestations of the hid-
den, using symmetries and conservation laws to restrict possible outcomes
and focusing on mean values ignoring fluctuations. More sophisticated ap-
proach derives the statistical laws by explicitly averaging over the hidden
degrees of freedom. Those laws justify thermodynamics and describe the
probabilities of fluctuations. More important, the basic notion of this appro-
ach (Gibbs entropy) turns out to be arguably the most important conceptual
and technical tool of the modern science and technology.

The first Chapter recalls the basics of thermodynamics and statistical
physics and their double focus on what we have (energy) and what we don’t
(knowledge). When ignorance exceeds knowledge, the right strategy is to
measure ignorance. Entropy does that. We learn how irreversible entropy
change appears from reversible flows in phase space via dynamical chaos. We
understand that entropy is not a property of a system, but of our knowledge
of the system. It is then natural to use the language of the information theory
revealing the universality of the approach, which to a large extend is based on
the simple trick of adding many random numbers. Building on that basis, one
develops several versatile instruments, of which the mutual information and
its quantum sibling, entanglement entropy, are presently most widely applied
to the description of subjects ranging from bacteria and neurons to markets
and quantum computers. We then discuss the so far most sophisticated way
to forget information - renormalization group. Forgetting is a fascinating
activity — one learns truly fundamental things this way. We end with the
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stochastic thermodynamics and the generalizations of the second law.
Even though it is a graduate text, the book uses only elementary mathe-

matical tools, but from all three fields — geometry, algebra and analysis —
which correspond respectively to studying space, time and continuum in the
physical world. We employ two complementary ways of thinking: continuous
flows and discrete combinatorics (thus involving both brain hemispheres).
Together, they produce a powerful and universal tool, applied everywhere,
from computer science and machine learning to biophysics and economics.
The book is panoramic, trying to combine into a reasonably coherent whole
the subjects that are taught in much details in different departments: ther-
modynamics and statistical mechanics (as taught in physics and engineering),
dynamical chaos (as taught in physics and applied mathematics), information
and communication theories (as taught in computer science and engineering).
At the end, recognizing the informational nature of physics and breaking the
barriers of specialization is also of value for physicists. People working on
quantum computers and the entropy of black holes use the same tools as
those designing self-driving cars and market strategies, studying molecular
biology, animal behavior and human languages, and figuring out how the
brain works. Last, I felt compelled to tell the story worth telling: how we
discover the limits imposed by uncertainty on engines, communications and
computations.

Small-print parts can be omitted upon the first reading.
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1 Thermodynamics and statistical physics

Our knowledge is always partial. If we study macroscopic systems, some
degrees of freedom remain hidden. For small sets of atoms or sub-atomic
particles, their quantum nature prevents us from knowing precise values of
their momenta and coordinates simultaneously. We believe that we found the
way around the partial knowledge in mechanics, electricity and magnetism,
where we have closed sets of equations describing explicitly known degrees
of freedom. Even in those cases our knowledge is partial, but we restrict
our description only to things that can be considered independent of the
unknown. For example, planets are large complex bodies, and yet the motion
of their centers of mass in the limit of large distances satisfies closed equations
of celestial mechanics. Already the next natural problem — how to describe
a planet rotation — needs the account of many extra degrees of freedom, such
as, for instance, oceanic flows (which slow down rotation by tidal forces).

Yet even when we have a closed set of equations, they need initial or
boundary conditions taken from measurements. Here again our knowledge is
only partial because of a finite precision of measurements. This has dramatic
consequences, when there is an instability, so that small variation of initial
data leads to large deviation in evolution. In a sense, every new decimal in
precision is a new degree of freedom for an unstable system.

In this course we shall deal with observable manifestations of the hidden
degrees of freedom. While we do not know their state, we do know their
nature, whether those degrees of freedom are related to moving particles,
spins, bacteria or market traders. That means that we know the symmetries
and conservation laws of the system.

The first two sections of this Chapter present a phenomenological appro-
ach called thermodynamics. The last two sections serve as a brief reminder
of statistical physics.

1.1 Basics of thermodynamics

One can teach monkey to differentiate, integration requires humans.
G Kotkin

It all started when practical needs to estimate the engine efficiency during
the industrial revolution led to the development of the abstract concept of
entropy. Heat engine works by delivering heat from a reservoir with some
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higher T1 via some system to another reservoir with T2 doing some work in
the process1. The work W is the difference between the heat given by the
hot reservoir Q1 and the heat absorbed by the cold one Q2. What is the
maximal fraction of heat we can use for work? Carnot in 1824 stated that in
all processes Q1/T1 ≤ Q2/T2, so that the efficiency is bounded from above:

W

Q1

=
Q1 −Q2

Q1

≤ 1− T2

T1

. (1)
T

Q

W

T
2

1

1

2
Q

His elaborate arguments are of only historic interest now. Clausius in 1865
introduced the notion of entropy as a factor connecting temperature and heat,
so we now interpret the Carnot criterium, saying that the entropy decrease
of the hot reservoirs, ∆S1 = Q1/T1, must be less than the entropy increase
of the cold one, ∆S2 = Q2/T2. Maximal work is achieved for minimal (zero)
total entropy change, ∆S2 = ∆S1, which happens for reversible processes
— if, for instance, a gas works by moving a piston then the pressure of the
gas and the work are less for a fast-moving piston than in equilibrium. The
efficiency is larger when the temperatures differ more.

Just like the progress from Carnot engine to a general thermodynamics,
laws of nature appear usually by induction: from data and particular cases
to a general law and from processes to state functions. The latter step
requires integration (to pass, for instance, from the Newton equations of
mechanics to the Hamiltonian or from thermodynamic equations of state
to thermodynamic potentials). It is much easier to differentiate than to
integrate, and so deduction (or postulation approach) is usually more simple
and elegant. It also provides a good vantage point for generalizations and
appeals to our brain, which likes to hypothesize before receiving any data. In
such an approach, one starts from postulating a variational principle for some
function of the state of the system. Then one deduces from that principle
the laws that govern changes when one passes from state to state.

Here we present a deductive description of thermodynims2. Thermodyn-
amics studies restrictions on the possible macroscopic properties that follow
from the fundamental conservation laws. Therefore, thermodynamics does

1Look under the hood of your car to appreciate the level of idealization achieved in
that definition.

2For a more detailed yet still compact presentation in this spirit, see the book H. B.
Callen, Thermodynamics (1965).
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not predict numerical values but rather sets inequalities and establishes re-
lations among different properties.

You start building thermodynamics by identifying a conserved quantity,
which can be exchanged but not created. It could be matter, money, energy,
etc. For most physical systems, the basic symmetry is invariance of the fun-
damental laws with respect to time shifts3. Evolution of an isolated physical
system is usually governed by the Hamiltonian (the energy written in ca-
nonical variables), whose time-independence means energy conservation. In
what follows, the conserved quantity of thermodynamics is called energy and
denoted E. We wish to ascribe to the states of the system the values of
E. We focus on the states independent of the way they are prepared. We
call such states equilibrium, they are completely characterized by the static
values of observable variables.

Passing from state to state under external action involves the energy
change, which generally consists of two parts: the energy change of visible
degrees of freedom (which we shall call work) and the energy change of hidden
degrees of freedom (which we shall call heat). To be able to measure energy
changes in principle, we need adiabatic processes where there is no heat
exchange, that is all energy changes are visible. Ascribing to every state
its energy (up to an additive constant common for all states) hinges on our
ability to relate any two equilibrium states A and B by an adiabatic process
either A → B or B → A, which allows to measure the difference in the
energies by the work W done by the system. Now, if we encounter a process
where the energy change is not equal to the work done, we call the difference
the heat exchange δQ:

dE = δQ− δW . (2)

This statement is known as the first law of thermodynamics. It is nothing but
declaration of our belief in energy conservation: if the visible energy balance
does not hold then the energy of the hidden must change. The energy is
a function of state so we use differential, but we use δ for heat and work,
which aren’t differentials of any function. Heat exchange and work depend
on the path taken from A to B, that is they refer to particular forms of energy
transfer (not energy content). The first law was experimentally discovered by

3Be careful trying to build thermodynamics for biological or social-economic systems,
since generally the laws that govern them are not time-invariant. For example, the metabo-
lism of the living beings changes with age, and the number of market regulations generally
increases (as well as the total money mass, albeit not necessarily in our pockets).
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Mayer in 1842; before that, heat was believed to be a separate fluid conserved
by itself.

The basic problem of thermodynamics is the determination of the equili-
brium state that eventually results after all internal constraints are removed
in a closed composite system. The problem is solved with the help of extre-
mum principle: there exists a quantity S called entropy which is a function
of the parameters of any composite system. The values assumed by the pa-
rameters in the absence of an internal constraint maximize the entropy over
the manifold of constrained equilibrium states (Clausius 1865).

Thermodynamic limit. Traditionally, thermodynamics have dealt with
extensive parameters whose value grows linearly with the number of degrees
of freedom. Extensive quantities are number of particles N , electric charge
and magnetic moment, etc. Energy usually is extensive in the thermody-
namic limit. That does not mean that it is additive. Indeed, the energy
of a composite system is not generally the sum of the parts because of an
interaction energy. To treat energy as an additive variable we make two as-
sumptions: i) assume that the forces of interaction are short-range and act
only along the boundary, ii) take thermodynamic limit V → ∞ where one
can neglect surface terms that scale as V 2/3 in comparison with the bulk
terms that scale as V .

In that limit, thermodynamic entropy is also an extensive variable4, which
is a homogeneous first-order function of all the extensive parameters:

S(λE, λV, . . .) = λS(E, V, . . .) . (3)

This function (called also fundamental relation) is everything one needs to
know to solve the basic problem (and others) in thermodynamics.

Of course, (3) does not mean that S(E) is a linear function when other
parameters fixed: S(λE, V, . . .) 6= λS(E, V, . . .). On the contrary, we shall
see in a moment that it is a convex function. Nor entropy is necessary a
monotonic function of energy5. Yet for every interval of a definite deriva-
tive sign, say (∂E/∂S)X > 0, we can solve S = S(E, V, . . .) uniquely for
E(S, V, . . .) which is an equivalent fundamental relation. We assume the

4We shall see later that non-extensive parts of entropy are also important for studying
interaction and correlations between subsystems.

5An example of the two-level system in Section 1.4 shows that S(E) could be non-
monotonic for systems with a finite phase space.
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functions S(E,X) and E(S,X) to be continuous differentiable. An efficient
way to treat partial derivatives is to use jacobians

∂(u, v)

∂(x, y)
=
∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
,

(
∂u

∂x

)
y

=
∂(u, y)

∂(x, y)
.

Then(
∂S

∂X

)
E

= 0⇒
(
∂E

∂X

)
S

= −∂(ES)

∂(XS)

∂(EX)

∂(EX)
= −

(
∂S

∂X

)
E

(
∂E

∂S

)
X

= 0 .

Differentiating the last relation one more time we get

(∂2E/∂X2)S = −(∂2S/∂X2)E(∂E/∂S)X ,

since the derivative of the second factor is zero as it is at constant X. We
thus see that in the case (∂E/∂S)X > 0 the equilibrium is defined by the
energy minimum instead of the entropy maximum (very much like circle
can be defined as the figure of either maximal area for a given perimeter or
minimal perimeter for a given area).

It is important that the equilibrium curve S(E) is convex, which gua-
rantees stability of a homogeneous state. Indeed, if our system would break
spontaneously into two halves with a bit different energies, the entropy must
decrease: 2S(E) > S(E+ ∆) +S(E−∆) = 2S(E) +S ′′∆2/2, which requires
S ′′ < 0 (that argument does not work for systems with long-range interaction
where energy is non-additive). On the figure, unconstrained equilibrium sta-
tes lie on the curve while all other states lie below. One can reach the state
A either maximizing entropy at a given energy or minimizing energy at a
given entropy:

A

S

E

One can work either in energy or entropy representation but ought to be
careful not to mix the two.
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1.2 Free energy

Let us emphasize that the fundamental relation always relates extensive
quantities. Therefore, even though it is always possible to eliminate, say,
S from E = E(S, V,N) and T = T (S, V,N) getting E = E(T, V,N), this
is not a fundamental relation and it does not contain all the information.
Indeed, E = E(T, V,N) is actually a partial differential equation (because
T = ∂E/∂S) and even if it can be integrated the result would contain unde-
termined function of V,N . Still, it is easier to measure, say, temperature than
entropy so it is convenient to have a complete formalism with an intensive
parameter as operationally independent variable and an extensive parameter
as a derived quantity. This is achieved by the Legendre transform: We want
to pass from the relation Y = Y (X) to that in terms of P = ∂Y/∂X. Yet it is
not enough to eliminate X and consider the function Y = Y [X(P )] = Y (P ),
because such function determines the curve Y = Y (X) only up to a shift
along X:

X

Y Y

X

For example, the single function Y = P 2/4 correspond to the family of
functions Y = (X+C)2 for arbitrary C. To fix the shift, we specify for every
P the position ψ(P ) where the straight line tangent to the curve intercepts
the Y -axis: ψ = Y − PX:

 

Y

XP

X

ψ

P

Y = Ψ + 

In this way we consider the curve Y (X) as the envelope of the family
of the tangent lines characterized by the slope P and the intercept ψ. The
function ψ(P ) = Y [X(P )] − PX(P ) completely defines the curve; here one
substitutes X(P ) found from P = ∂Y (X)/∂X. The function ψ(P ) is the
Legendre transform of Y (X). From dψ = −PdX − XdP + dY = −XdP
one gets −X = ∂ψ/∂P i.e. the inverse transform is the same up to a sign:
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Y = ψ +XP .
The transform is possible when for every X there is one P , that is P (X)

is monotonic and Y (X) is convex, ∂P/∂X = ∂2Y/∂X2 6= 0. Sign-definite
second derivative means that the function is either concave or convex. This
is the second time we meet convexity, which can be also related to stability.
Indeed, for the function E(S), one-to-one correspondence between S and
T = ∂E/∂S guarantees uniformity of the temperature across the system.
Convexity and concavity will play an important role in this course.

Different thermodynamics potentials suitable for different physical
situations are obtained replacing different extensive parameters by the re-
spective intensive parameters.

Free energy F = E − TS (also called Helmholtz potential) is that partial
Legendre transform of E which replaces the entropy by the temperature as
an independent variable: dF (T, V,N, . . .) = −SdT −PdV + µdN + . . .. It is
particularly convenient for the description of a system in a thermal contact
with a heat reservoir because then the temperature is fixed and we have one
variable less to care about. The maximal work that can be done under a
constant temperature (equal to that of the reservoir) is minus the differential
of the free energy. Indeed, this is the work done by the system and the thermal
reservoir. That work is equal to the change of the total energy

d(E + Er) = dE + TrdSr = dE − TrdS = d(E − TrS) = d(E − TS) = dF .

In other words, the free energy F = E − TS is that part of the internal
energy which is free to turn into work, the rest of the energy TS we must
keep to sustain a constant temperature. The equilibrium state minimizes F ,
not absolutely, but over the manifold of states with the temperature equal to
that of the reservoir. Indeed, consider F (T,X) = E[S(T,X), X]−TS(T,X),
then (∂E/∂X)S = (∂F/∂X)T that is they turn into zero simultaneously.
Also, in the point of extremum, one gets (∂2E/∂X2)S = (∂2F/∂X2)T i.e.
both E and F are minimal in equilibrium.

Since the Legendre transform is invertible, all thermodynamic potentials
are equivalent and contain the same information. The choice of the potential
for a given physical situation is that of convenience: we usually take what is
fixed as a variable to diminish the number of effective variables.

The next two sections present a brief reminder of classical Boltzmann-
Gibbs statistical mechanics. Here we introduce microscopic statistical des-
cription in the phase space and describe two principal ways (microcanonical
and canonical) to derive thermodynamics from statistical mechanics.
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1.3 Microcanonical distribution

Consider a closed system with the fixed number of particles N and the energy
E0. Boltzmann assumed that all microstates with the same energy have equal
probability (ergodic hypothesis) which gives the microcanonical distribution:

ρ(p, q) = Aδ[E(p1 . . . pN , q1 . . . qN)− E0] . (4)

Usually one considers the energy fixed with the accuracy ∆ so that the mi-
crocanonical distribution is

ρ =
{

1/Γ for E ∈ (E0, E0 + ∆)
0 for E 6∈ (E0, E0 + ∆) ,

(5)

where Γ is the volume of the phase space occupied by the system

Γ(E, V,N,∆) =
∫
E<H<E+∆

d3Npd3Nq . (6)

For example, for N noninteracting particles (ideal gas) the states with the
energy E =

∑
p2/2m are in the p-space near the hyper-sphere with the

radius
√

2mE. Remind that the surface area of the hyper-sphere with the
radius R in 3N -dimensional space is 2π3N/2R3N−1/(3N/2− 1)! and we have

Γ(E, V,N,∆) ∝ E3N/2−1V N∆/(3N/2− 1)! ≈ (E/N)3N/2V N∆ . (7)

To link statistical physics with thermodynamics one must define the fun-
damental relation i.e. a thermodynamic potential as a function of respective
variables. For microcanonical distribution, Boltzmann introduced the en-
tropy as

S(E, V,N) = ln Γ(E, V,N) . (8)

This is one of the most important formulas in physics6 (on a par with F =
ma ,E = mc2 and E = h̄ω).

Noninteracting subsystems are statistically independent. That means
that the statistical weight of the composite system is a product - indeed, for
every state of one subsystem we have all the states of another. If the weight
is a product then the entropy is a sum. For interacting subsystems, this is
true only for short-range forces in the thermodynamic limit N →∞.

6It is inscribed on the Boltzmann’s gravestone.
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Consider two subsystems, 1 and 2, that can exchange energy. Let’s see
how statistics solves the basic problem of thermodynamics (to define equili-
brium) that we treated above in (??). Assume that the indeterminacy in the
energy of any subsystem, ∆, is much less than the total energy E. Then

Γ(E) =
E/∆∑
i=1

Γ1(Ei)Γ2(E − Ei) . (9)

We denote Ē1, Ē2 = E − Ē1 the values that correspond to the maximal
term in the sum (9). To find this maximum, we compute the derivative of it,
which is proportional to (∂Γ1/∂Ei)Γ2+(∂Γ2/∂Ei)Γ1 = (Γ1Γ2)[(∂S1/∂E1)Ē1

−
(∂S2/∂E2)Ē2

]. Then the extremum condition is evidently (∂S1/∂E1)Ē1
=

(∂S2/∂E2)Ē2
, that is the extremum corresponds to the thermal equilibrium

where the temperatures of the subsystems are equal. The equilibrium is
thus where the maximum of probability is. It is obvious that Γ(Ē1)Γ(Ē2) ≤
Γ(E) ≤ Γ(Ē1)Γ(Ē2)E/∆. If the system consists of N particles and N1, N2 →
∞ then S(E) = S1(Ē1) +S2(Ē2) +O(logN) where the last term is negligible
in the thermodynamic limit.

The same definition (entropy as a logarithm of the number of states) is
true for any system with a discrete set of states. For example, consider the
set of N particles (spins, neurons), each with two energy levels 0 and ε. If
the energy of the set is E then there are L = E/ε upper levels occupied.
The statistical weight is determined by the number of ways one can choose L
out of N : Γ(N,L) = CL

N = N !/L!(N − L)!. We can now define entropy (i.e.
find the fundamental relation): S(E,N) = ln Γ. At the thermodynamic limit
N � 1 and L� 1, it gives S(E,N) ≈ N ln[N/(N − L)] + L ln[(N − L)/L],
which coincides with (??). The entropy as a function of energy is drawn in
the Figure:

E

0

T=+0

ε

T=

T=−0

N

T=−

S

The entropy is symmetric about E = Nε/2 and is zero at E = 0, Nε when
all the particles are in the same state.. The equation of state (temperature-
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energy relation) is T−1 = ∂S/∂E ≈ ε−1 ln[(N − L)/L]. We see that when
E > Nε/2 then the population of the higher level is larger than of the
lower one (inverse population as in a laser) and the temperature is negative.
Negative temperature may happen only in systems with the upper limit of
energy levels and simply means that by adding energy beyond some level
we actually decrease the entropy i.e. the number of accessible states. That
example with negative temperature is to help you to disengage from the
everyday notion of temperature and to get used to the physicist idea of
temperature as the derivative of energy with respect to entropy.

The derivation of thermodynamic fundamental relation S(E, . . .) in the
microcanonical ensemble is thus via the number of states or phase volume.

1.4 Canonical distribution

Consider a small subsystem or a system in a contact with a thermostat, which
can be thought of as consisting of infinitely many copies of our system — this
is so-called canonical ensemble, characterized by N, V, T . Let us derive the
canonical distribution from the microcanonical. Here our system can have
any energy and the question arises what is the probability W (E). Let us
find first the probability of the system to be in a given microstate a with the
energy E. Since all the states of the thermostat are equally likely to occur,
then the probability should be directly proportional to the statistical weight
of the thermostat Γ0(E0 − E), where we assume E � E0, expand (in the
exponent!) Γ0(E0−E) = exp[S0(E0−E)] ≈ exp[S0(E0)−E/T )] and obtain

wa(E) = Z−1 exp(−E/T ) , (10)

Z =
∑
a

exp(−Ea/T ) . (11)

Note that there is no trace of the thermostat left except for the temperature.
The normalization factor Z(T, V,N) is a sum over all states accessible to the
system and is called the partition function.

The probability to have a given energy is the probability of the state (10)
times the number of states i.e. the statistical weight of the subsystem:

W (E) = Γ(E)wa(E) = Γ(E)Z−1 exp(−E/T ) . (12)

Here the weight Γ(E) grows with E very fast for large N . But as E → ∞
the exponent exp(−E/T ) decays faster than any power. As a result, W (E)
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is concentrated in a very narrow peak and the energy fluctuations around Ē
are very small. For example, for an ideal gas W (E) ∝ E3N/2 exp(−E/T ).
Let us stress again that the Gibbs canonical distribution (10) tells that the
probability of a given microstate exponentially decays with the energy of the
state while (12) tells that the probability of a given energy has a peak.

To get thermodynamics from the Gibbs distribution one needs to define
the free energy because we are under a constant temperature. This is done
via the partition function Z (which is of central importance since macroscopic
quantities are generally expressed via the derivatives of it):

F (T, V,N) = −T lnZ(T, V,N) . (13)

To prove that, differentiate the identity Z = exp(−F/T ) =
∑
a exp(−Ea/T )

with respect to temperature, which gives

F = Ē + T

(
∂F

∂T

)
V

,

equivalent to F = E − TS in thermodynamics.
One can also relate statistics and thermodynamics by defining entropy.

Remind that for a closed system Boltzmann defined S = ln Γ while the
probability of state was wa = 1/Γ. In other words, the entropy was minus
the log of probability. For a subsystem at fixed temperature both energy
and entropy fluctuate. What should be the thermodynamic entropy: mean
entropy −〈lnwa〉 or entropy at a mean energy lnwa(E)? For a system that
has a Gibbs distribution, lnwa is linear in Ea, so that the entropy at a mean
energy is the mean entropy, and we recover the standard thermodynamic
relation:

S = − 〈lnwa〉 = −
∑

wa lnwa =
∑

wa(Ea/T + lnZ) (14)

= E/T + lnZ = (E − F )/T = − lnwa(E) = S(E) .

Even though the Gibbs entropy, S = −∑wa lnwa is derived here for
equilibrium, this definition can be used for any set of probabilities wa, since
it provides a useful measure of our ignorance about the system, as we shall
see later.

Are canonical and microcanonical descriptions equivalent? Of course, not.
The descriptions are equivalent only when fluctuations are neglected and con-
sideration is restricted to mean values. That takes place in thermodynamics,
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where the distributions just produce different fundamental relations between
the mean values: S(E,N) for microcanonical, F (T,N) for canonical, Ω(T, µ)
for grand canonical. These relations are related by the Legendre transforms.
How operationally one checks, for instance, the equivalence of canonical and
microcanonical energies? One takes an isolated system at a given energy E,
measures the derivative ∂E/∂S, then puts it into the thermostat with the
temperature equal to that ∂E/∂S; the energy now fluctuates but the mean
energy must be equal to E (as long as system is macroscopic and all the
interactions are short-range).

Let us repeat this important distinction: all thermodynamic potentials
are equivalent for the description of mean values but respective statistical dis-
tributions are different. System that can exchange energy and particles with
a thermostat has its extensive parameters E and N fluctuating and the grand
canonical distribution describes those fluctuations. The choice of description
is dictated only by convenience in thermodynamics because it treats only
mean values. But if we want to describe the whole statistics of the system in
thermostat, we need to use canonical distribution, not the micro-canonical
one. That does not mean that one cannot learn everything about a weakly
fluctuating system in thermal equilibrium by considering it isolated (micro-
canonically). Indeed, we can determine CV (and other second derivatives)
for an isolated system and then will know the mean squared fluctuation of
energy when we bring the system into a contact with a thermostat.

2 Appearance of irreversibility

Où sont les neiges d’antan?
François Villon

After we recalled thermodynamics and statistical physics, it is time for
reflection. The main puzzle here is how irreversible entropy growth appears
out of reversible laws of mechanics. If we screen the movie of any evolution
backwards, it will be a legitimate solution of the equations of motion. Will
it have its entropy decreasing? Can we also decrease entropy by employing
the Maxwell demon who can distinguish fast molecules from slow ones and
selectively open a window between two boxes to increase the temperature
difference between the boxes and thus decrease entropy?

These conceptual questions have been already posed in the 19 century.
It took the better part of the 20 century to answer these questions, resolve
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the puzzles and make statistical physics conceptually trivial (and technically
much more powerful). This required two things: i) better understanding
dynamics and revealing the mechanism of randomization called dynamical
chaos, ii) consistent use of the information theory which turned out to be
just another form of statistical physics. This Chapter is devoted to the first
subject, the next Chapter — to the second one. Here we describe how ir-
reversibility and relaxation to equilibrium essentially follows from necessity
to consider ensembles (regions in phase space) due to incomplete knowledge.
Initially small regions spread over the whole phase space under reversible
Hamiltonian dynamics, very much like flows of an incompressible liquid are
mixing. Such spreading and mixing in phase space correspond to the appro-
ach to equilibrium. On the contrary, to deviate a system from equilibrium,
one adds external forcing and dissipation, which makes its phase flow com-
pressible and distribution non-uniform. Difference between equilibrium and
non-equilibrium distributions in phase space can then be expressed by the
difference between incompressible and compressible flows.

2.1 Evolution in the phase space

So far we said precious little about how physical systems actually evolve. Let
us focus on a broad class of energy-conserving systems that can be described
by the Hamiltonian evolution. Every such system is characterized by its
momenta p and coordinates q, together comprising the phase space. We
define probability for a system to be in some ∆p∆q region of the phase
space as the fraction of time it spends there: w = limT→∞∆t/T . Assuming
that the probability to find it within the volume dpdq is proportional to
this volume, we introduce the statistical distribution in the phase space as
density: dw = ρ(p, q)dpdq. By definition, the average with the statistical
distribution is equivalent to the time average:

f̄ =
∫
f(p, q)ρ(p, q)dpdq = lim

T→∞

1

T

∫ T

0
f(t)dt . (15)

The main idea is that ρ(p, q) for a subsystem does not depend on the initial
states of this and other subsystems so it can be found without actually sol-
ving equations of motion. We define statistical equilibrium as a state where
macroscopic quantities are equal to the mean values. Assuming short-range
forces we conclude that different macroscopic subsystems interact weakly and
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are statistically independent so that the distribution for a composite system
ρ12 is factorized: ρ12 = ρ1ρ2.

Since we usually do not know exactly the coordinates and momenta of
all particles, we consider the ensemble of identical systems starting from
different points in some domain of the phase space. In a flow with the
velocity v = (ṗ, q̇) the density changes according to the continuity equation:
∂ρ/∂t+ div (ρv) = 0. For not very long time, the motion can be considered
conservative and described by the Hamiltonian dynamics: q̇i = ∂H/∂pi and
ṗi = −∂H/∂qi, so that

∂ρ

∂t
=
∑
i

∂H
∂pi

∂ρ

∂qi
− ∂H
∂qi

∂ρ

∂pi
≡ {ρ,H} .

Here the Hamiltonian generally depends on the momenta and coordinates
of the given subsystem and its neighbors. Hamiltonian flow in the phase
space is incompressible, it conserves area in each plane pi, qi and the total
volume: div v = ∂q̇i/∂qi + ∂ṗi/∂pi = 0. That gives the Liouville theorem:
dρ/dt = ∂ρ/∂t + (v∇)ρ = −ρdiv v = 0. The statistical distribution is thus
conserved along the phase trajectories of any subsystem. As a result, ρ is an
integral of motion and it must be expressed solely via the integrals of motion.
Since in equilibrium ln ρ is an additive quantity then it must be expressed
linearly via the additive integrals of motions which for a general mechanical
system are momentum P(p, q), the momentum of momentum M(p, q) and
energy E(p, q) (again, neglecting interaction energy of subsystems):

ln ρa = αa + βEa(p, q) + c ·Pa(p, q) + d ·M(p, q) . (16)

Here αa is the normalization constant for a given subsystem while the se-
ven constants β, c,d are the same for all subsystems (to ensure additivity
of integrals) and are determined by the values of the seven integrals of mo-
tion for the whole system. We thus conclude that the additive integrals of
motion is all we need to get the statistical distribution of a closed system
(and any subsystem), those integrals replace all the enormous microscopic
information. Considering subsystem which neither moves nor rotates we are
down to the single integral, energy, which corresponds to the Gibbs’ canonical
distribution:

ρ(p, q) = A exp[−βE(p, q)] . (17)

It was obtained for any macroscopic subsystem of a very large system, which
is the same as any system in the contact with thermostat. Note one subtlety:
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On the one hand, we considered subsystems weakly interacting to have their
energies additive and distributions independent. On the other hand, precisely
this weak interaction is expected to drive a complicated evolution of any
subsystem, which makes it visiting all regions of the phase space, thus making
statistical description possible. Particular case of (17) is a microcanonical
(constant) distribution, which is evidently invariant under the Hamiltonian
evolution of an isolated system due to Liouville theorem.

Assuming that the system spends comparable time in different available
states (ergodic hypothesis) we conclude that since the equilibrium must be
the most probable state, then it corresponds to the entropy maximum. In
particular, the canonical equilibrium distribution (17) corresponds to the
maximum of the Gibbs entropy, S = −

∫
ρ ln ρ dpdq, under the condition

of the given mean energy Ē =
∫
ρ(p, q)E(p, q) dpdq. Indeed, requiring zero

variation δ(S + βĒ) = 0 we obtain (17). For an isolated system with a
fixed energy, the entropy maximum corresponds to a uniform micro-canonical
distribution.

2.2 Phase-space mixing and entropy growth

How the system comes to the equilibrium and reaches the entropy maximum?
What often causes confusion here is that the dynamics (classical and quan-
tum) of any given system is time reversible. The Hamiltonian evolution des-
cribed above is an incompressible flow in the phase space, div v = 0, so it con-
serves the total Gibbs entropy: dS/dt = −

∫
dx ln ρ∂ρ

∂t
=
∫
dx ln ρ div ρv =

−
∫
dx (v∇)ρ = −

∫
dx ρ div v = 0. How then the entropy can grow?

To answer that question, let us return to the full N -particle distribution
and recall that we have an incomplete knowledge of the system. That means
that we always measure coordinates and momenta within some intervals, i.e.
characterize the system not by a point in phase space but by a finite region
there. We shall see that quite general dynamics stretches this finite domain
into a very thin convoluted strip whose parts can be found everywhere in
the available phase space, say on a fixed-energy surface. The dynamics thus
provides a stochastic-like element of mixing in phase space that is responsible
for the approach to equilibrium, say to uniform microcanonical distribution.
Yet by itself this stretching and mixing does not change the phase volume
and entropy. Another ingredient needed is the necessity to continually treat
our system with finite precision, which follows from the insufficiency of in-
formation. Such consideration is called coarse graining and it, together with
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mixing, it is responsible for the irreversibility of statistical laws and for the
entropy growth.

The dynamical mechanism of the entropy growth is the separation of
trajectories in phase space so that trajectories started from a small neig-
hborhood are found in larger and larger regions of phase space as time
proceeds. Denote again by x = (P,Q) the 6N -dimensional vector of the
position and by v = (Ṗ, Q̇) the velocity in the phase space. The relative
motion of two points, separated by r, is determined by their velocity diffe-
rence: δvi = rj∂vi/∂xj = rjσij. We can decompose the tensor of velocity
derivatives into an antisymmetric part (which describes rotation) and a sym-
metric part Sij = (∂vi/∂xj + ∂vj/∂xi)/2 (which describes deformation). We
are interested here in deformation because it is the mechanism of the entropy
growth. The vector initially parallel to the axis j turns towards the axis i
with the angular speed ∂vi/∂xj, so that 2Sij is the rate of variation of the
angle between two initially mutually perpendicular small vectors along i and
j axes. In other words, 2Sij is the rate with which rectangle deforms into
parallelograms: S

Sδ
yx

yx
y

δy

δx

δx

Arrows in the Figure show the velocities of the endpoints. The symmetric
tensor Sij can be always transformed into a diagonal form by an orthogonal
transformation (i.e. by the rotation of the axes), so that Sij = Siδij. Accor-
ding to the Liouville theorem, a Hamiltonian dynamics is an incompressible
flow in the phase space, so that the trace of the tensor, which is the rate
of the volume change, must be zero: Trσij =

∑
i Si = div v = 0 — that

some components are positive, some are negative. Positive diagonal compo-
nents are the rates of stretching and negative components are the rates of
contraction in respective directions. Indeed, the equation for the distance
between two points along a principal direction has a form: ṙi = δvi = riSi .
The solution is as follows:

ri(t) = ri(0) exp
[∫ t

0
Si(t

′) dt′
]
. (18)

For a time-independent strain, the growth/decay is exponential in time. One
recognizes that a purely straining motion converts a spherical element into an
ellipsoid with the principal diameters that grow (or decay) in time. Indeed,
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Figure 1: Deformation of a phase-space element by a permanent strain.

consider a two-dimensional projection of the initial spherical element i.e. a

circle of the radius R at t = 0. The point that starts at x0, y0 =
√
R2 − x2

0

goes into

x(t) = eS11tx0 ,

y(t) = eS22ty0 = eS22t
√
R2 − x2

0 = eS22t
√
R2 − x2(t)e−2S11t ,

x2(t)e−2S11t + y2(t)e−2S22t = R2 . (19)

The equation (19) describes how the initial circle turns into the ellipse whose
eccentricity increases exponentially with the rate |S11 − S22|. In a multi-
dimensional space, any sphere of initial conditions turns into the ellipsoid
defined by

∑6N
i=1 x

2
i (t)e

−2Sit =const.
Of course, as the system moves in the phase space, both the strain va-

lues and the orientation of the principal directions change, so that expanding
direction may turn into a contracting one and vice versa. Since we do not
want to go into details of how the system interacts with the environment,
then we consider such evolution as a kind of random process. The question
is whether averaging over all values and orientations gives a zero net result.
It may seem counter-intuitive at first, but in a general case an exponential
stretching persists on average and the majority of trajectories separate. Phy-
sicists think in two ways: one in space and another in time (unless they are
relativistic and live in a space-time)7.

Let us first look at separation of trajectories from a temporal perspective,
going with the flow: even when the average rate of separation along a given
direction, Λi(t) =

∫ t
0 Si(t

′)dt′/t, is zero, the average exponent of it is larger
than unity (and generally growing with time):

lim
t→∞

∫ t

0
Si(t

′)dt′ = 0 , lim
T→∞

1

T

∫ T

0
dt exp

[∫ t

0
Si(t

′)dt′
]
≥ 1 . (20)

7”Time and space are modes by which we think and not conditions in which we live”
A. Einstein
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This is because the intervals of time with positive Λ(t) give more contribution
into the exponent than the intervals with negative Λ(t). That follows from
the concavity of the exponential function. In the simplest case, when Λ is
uniformly distributed over the interval −a < Λ < a, the average Λ is zero,
while the average exponent is (1/2a)

∫−a
a eΛdΛ = (ea − e−a)/2a > 1.

Looking from a spatial perspective, consider the simplest flow field: two-
dimensional8 pure strain, which corresponds to an incompressible saddle-
point flow: vx = λx, vy = −λy. Here we have one expanding direction and
one contracting direction, their rates being equal. The vector r = (x, y)
(the distance between two close trajectories) can look initially at any di-
rection. The evolution of the vector components satisfies the equations
ẋ = vx and ẏ = vy. Whether the vector is stretched or contracted after
some time T depends on its orientation and on T . Since x(t) = x0 exp(λt)
and y(t) = y0 exp(−λt) = x0y0/x(t) then every trajectory is a hyperbole. A
unit vector initially forming an angle ϕ with the x axis will have its length
[cos2 ϕ exp(2λT )+sin2 ϕ exp(−2λT )]1/2 after time T . The vector is stretched
if cosϕ ≥ [1 + exp(2λT )]−1/2 < 1/

√
2, i.e. the fraction of stretched directi-

ons is larger than half. When along the motion all orientations are equally
probable, the net effect is stretching, increasing with the persistence time T .

The net stretching and separation of trajectories is formally proved in mat-
hematics by considering random strain matrix σ̂(t) and the transfer matrix Ŵ
defined by r(t) = Ŵ (t, t1)r(t1). It satisfies the equation dŴ/dt = σ̂Ŵ . The Liou-
ville theorem tr σ̂ = 0 means that det Ŵ = 1. The modulus r(t) of the separation
vector may be expressed via the positive symmetric matrix Ŵ T Ŵ . The main re-
sult (Furstenberg and Kesten 1960; Oseledec, 1968) states that in almost every
realization σ̂(t), the matrix 1

t ln Ŵ T (t, 0)Ŵ (t, 0) tends to a finite limit as t→∞.
In particular, its eigenvectors tend to d fixed orthonormal eigenvectors fi. Geo-
metrically, that precisely means than an initial sphere evolves into an elongated
ellipsoid at later times. The limiting eigenvalues

λi = lim
t→∞

t−1 ln |Ŵ fi| (21)

define the so-called Lyapunov exponents, which can be thought of as the mean

stretching rates. The sum of the exponents is zero due to the Liouville theorem

so there exists at least one positive exponent which gives stretching. Therefore,

8Two-dimensional phase space corresponds to the trivial case of one particle moving
along a line, yet it is great illustrative value. Also, remember that the Liouville theorem
is true in every pi − qi plane projection.
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Figure 2: Left panel: streamlines of the saddle-point flow. Right panel:
motion along a streamline. For ϕ = ϕ0 the initial and final points are
symmetric relative to the diagonal: x(0) = y(T ) and y(0) = x(T ). If
ϕ < ϕ0 = arccos[1 + exp(2λT )]−1/2 > π/4, then the distance from the origin
increases.

as time increases, the ellipsoid is more and more elongated and it is less and less

likely that the hierarchy of the ellipsoid axes will change. Mathematical lesson to

learn is that multiplying N random matrices with unit determinant (recall that

determinant is the product of eigenvalues), one generally gets some eigenvalues

growing and some decreasing exponentially with N . It is also worth remembering

that in a random flow there is always a probability for two trajectories to come

closer. That probability decreases with time but it is finite for any finite time.

In other words, majority of trajectories separate but some approach. The separa-

ting ones provide for the exponential growth of positive moments of the distance:

E(a) = limt→∞ t
−1 ln [〈ra(t)/ra(0)〉] > 0 for a > 0. However, approaching trajec-

tories have r(t) decreasing, which guarantees that the moments with sufficiently

negative a also grow. Mention without proof that E(a) is a concave function,

which evidently passes through zero, E(0) = 0. It must then have another zero

which for isotropic random flow in d-dimensional space can be shown to be a = −d,

see home exercise.

The probability to find a ball turning into an exponentially stretching
ellipse thus goes to unity as time increases. The physical reason for it is that
substantial deformation appears sooner or later. To reverse it, one needs to
contract the long axis of the ellipse, that is the direction of contraction must
be inside the narrow angle defined by the ellipse eccentricity, which is less
likely than being outside the angle:
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 contracting direction 

 must be within the angle

To transform ellipse to circle,

This is similar to the argument about the irreversibility of the Boltz-
mann equation in the previous subsection. Randomly oriented deformations
on average continue to increase the eccentricity. Drop ink into a glass of
water, gently stir (not shake) and enjoy the visualization of Furstenberg and
Oseledets theorems.

Armed with the understanding of the exponential stretching, we now
return to the dynamical foundation of the second law of thermodynamics.
We assume that our finite resolution does not allow us to distinguish between
the states within some square in the phase space. That square is our ”grain”
in coarse-graining. In the figure below, one can see how such black square of
initial conditions (at the central box) is stretched in one (unstable) direction
and contracted in another (stable) direction so that it turns into a long narrow
strip (left and right boxes). Later in time, our resolution is still restricted
- rectangles in the right box show finite resolution (this is coarse-graining).
Viewed with such resolution, our set of points occupies larger phase volume
at t = ±T than at t = 0. Larger phase volume corresponds to larger entropy.
Time reversibility of any trajectory in the phase space does not contradict the
time-irreversible filling of the phase space by the set of trajectories considered
with a finite resolution. By reversing time we exchange stable and unstable
directions (i.e. those of contraction and expansion), but the fact of space
filling persists. We see from the figure that the volume and entropy increase
both forward and backward in time. And yet our consideration does provide
for time arrow: If we already observed an evolution that produces a narrow
strip then its time reversal is the contraction into a ball; but if we consider
a narrow strip as an initial condition, it is unlikely to observe a contraction
because of the narrow angle mentioned above. Therefore, being shown two
movies, one with stretching, another with contraction we conclude that with
probability close (but not exactly equal!) to unity the first movie shows the
true sequence of events, from the past to the future.

When the density spreads, entropy grows (as the logarithm of the volume
occupied). If initially our system was within the phase-space volume ε6N ,
then its density was ρ0 = ε−6N inside and zero outside. After stretching to
some larger volume eλtε6N the entropy S = −

∫
ρ ln ρdx has increased by λt.
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Figure 3: Increase of the phase volume upon stretching-contraction and
coarse-graining. Central panel shows the initial state and the velocity field.

The positive Lyapunov exponent λ determines the rate of the entropy growth.
If in a d-dimensional space there are k stretching and d − k contracting
directions, then contractions eventually stabilize at the resolution scale, while
expansions continue. Therefore, the volume growth rate is determined by the
sum of the positive Lyapunov exponents

∑k
i=1 λi.

We shall formally define information later, here we use everyday intuition
about it to briefly discuss our flow from this perspective. Consider an ensem-
ble of systems having close initial positions within our finite resolution. In
a flow with positive Lyapunov exponents, with time we loose our ability to
predict where it goes. This loss of information is determined by the growth
of the available phase volume, that is of the entropy. But we can look bac-
kwards in time and ask where the points come from. The two points along
a stretching direction that were hidden inside the resolution circle separate
with time and can be distinguished:

Moreover, as time proceeds, we learn more and more about the initial
locations of the points. The acquisition rate of such information about the
past is again the sum of the positive Lyapunov exponents and is called the
Kolmogorov-Sinai entropy. As time lag from the present moment increases,
we can say less and less where we shall be and more and more where we came
from. It illustrates the Kierkegaard’s remark that the irony of life is that it
is lived forward but understood backwards.

Two concluding remarks are in order. First, the notion of an exponential
separation of trajectories put an end to the old dream of Laplace to be able
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to predict the future if only all coordinates and momenta are given. Even
if we were able to measure all relevant phase-space initial data, we can do
it only with a finite precision ε. However small is the indeterminacy in the
data, it is amplified exponentially with time so that eventually ε exp(λT ) is
large and we cannot predict the outcome. Mathematically speaking, limits
ε→ 0 and T → ∞ do not commute. Second, the above arguments did not
use the usual mantra of thermodynamic limit, which means that even the
systems with a small number of degrees of freedom need statistics for their
description at long times if their dynamics has a positive Lyapunov exponent
(which is generic) - this is sometimes called dynamical chaos.9

2.3 Entropy decrease and non-equilibrium fractal me-
asures

As we have seen in the previous two sections, if we have indeterminacy in
the data or consider an ensemble of systems, then Hamiltonian dynamics (an
incompressible flow) effectively mixes and makes distribution uniform in the
phase space. Since we have considered isolated systems, they conserve their
integrals of motion, so that the distribution is uniform over the respective
surface. In particular, dynamical chaos justifies micro-canonical distribution,
uniform over the energy surface.

But what if the dynamics is non-Hamiltonian, that is Liouville theorem
is not valid? The flow in the phase space is then generally compressible.
For example, we accelerate particles by external forces fi and damp their
momenta with the dissipation rates γi, so that the equations of motion take
the form: ṗi = fi − γipi − ∂H/∂qi, q̇i = ∂H/∂pi, which gives generally
div v =

∑
i(∂fi/∂pi − γi) 6= 0. Let us show that such flows create quite

different distribution. Since div v 6= 0, then the probability density generally
changes along a flow: dρ/dt = −ρdiv v. That produces entropy,

dS

dt
=
∫
ρ(r, t)div v(r, t) dr = 〈ρdiv v〉 . (22)

9As a student, I’ve participated (as a messenger) in the discussion on irreversibility
between Zeldovich and Sinai. I remember Zeldovich asking why coarse-graining alone
(already introduced by Boltzmann) is not enough to explain irreversibility. Why one
needs dynamical chaos to justify what one gets by molecular chaos? I believe that Sinai
was right promoting separation of trajectories. It replaces arbitrary assumptions by clear
demonstration from first principles, which is conceptually important, even though possible
in idealized cases only.
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with the rate equal to the Lagrangian mean of the phase-volume local ex-
pansion rate. If the system does not on average heats or cools (expands or
contracts), then the whole phase volume does not change. That means that
the global average (over the whole volume) of the local expansion rate is
zero: 〈div v〉 =

∫
div v dr = 0. Yet for a non-uniform density, the entropy is

not the log of the phase volume but the minus mean log of the phase den-
sity, S = −〈ρ ln ρ〉, whose derivative (22) is non-zero because of correlations
between ρ and div v. Since ρ is always smaller in the expanding regions
where div v > 0, then the entropy production rate (22) is non-positive. We
conclude that the mean logarithm of the density (i.e. entropy) decreases.
Since the uniform distribution has a maximal entropy under the condition of
fixed normalization, then the entropy decrease means that the distribution
is getting more non-uniform.

What happens then to the density? Of course, if we integrate density
over all the phase space we obtain unity at any time: 〈ρ〉 =

∫
ρ(r, t) dr = 1.

Let us now switch focus from space to time and consider the density of an
arbitrary fluid element, which evolves as follows:

ρ(t)/ρ(0) = exp
[
−
∫ t

0
div v(t′) dt′

]
= eC(t) . (23)

As we have seen in (20), if a mean is zero, the mean exponent generally
exceeds unity because of concavity of the exponential function. Now the
contraction factor averaged over the whole flow is zero at any time, 〈C〉 = 0,
and its average exponent is larger than unity:

〈ρ(t)/ρ(0)〉 = lim
T→∞

1

T

∫ T

0
dt exp

[
−
∫ t

0
div v(t′) dt′

]
= 〈eC〉 > 1 .

That concavity simply means that the parts of the flow with positive C give
more contribution into the exponent than the parts with negative C. More-
over, for a generic random flow the density of most fluid elements must grow
non-stop as they move. Indeed, if the Lagrangian quantity (taken in the flow
reference frame) div v(r, t) is random function with a finite correlation time,
then at longer times its integral

∫ t
0 div v(t′) dt′ is Gaussian with zero mean

and variance linearly growing with time (see section 3.1). Since the total me-
asure is conserved, growth of density at some places must be compensated
by its decrease in other places, so that the distribution is getting more and
more non-uniform, which decreases the entropy. Looking at the phase space
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one sees it more and more emptied with the density concentrated asymptoti-
cally in time on a fractal set. That is opposite to the mixing by Hamiltonian
incompressible flow.

In particular, for spatially smooth flow, the long-time Lagrangian average
(along the flow)

lim
t→∞

1

t

∫ t

0
div v(t′) dt′ =

∑
i

λi

is a sum of the Lyapunov exponents, which is then non-positive (in dis-
tinction from an instantaneous average over space, which is zero at any time:∫
div v dr = 0). It is important that we allowed for a compressibility of a

phase-space flow v(r, t) but did not require its irreversibility. Indeed, even
if the system is invariant with respect to t → −t, v → −v, the entropy
production rate is generally non-negative and the sum of the Lyapunov ex-
ponents is non-positive for the same simple reason that contracting regions
have more measure and give higher contributions. Backwards in time the
measure also concentrates, only on a different set.

To conclude this Chapter, let us stress the difference between the entropy
growth described in the Sections 2.2-?? and the entropy decay described in
the present Section. In the former, phase-space flows were area-preserving
and the volume growth of an element was due to a finite resolution which
stabilized the size in the contracting direction, so that the mean rate of
the volume growth was solely due to stretching directions and thus equal
to the sum of the positive Lyapunov exponents, as described in Section 2.2.
On the contrary, the present section deals with compressible flows which
decrease entropy by creating more inhomogeneous distributions, so that the
mean rate of the entropy decay is the sum of all the Lyapunov exponents,
which is non-positive since contracting regions contain more trajectories and
contribute the mean rate more than expanding regions.

Looking back at the previous Chapters, it is a good time to appreciate the
complementarity of determinism and randomness expressed in terms ”sta-
tistical mechanics” (19th century) and ”dynamical chaos” (20th century).
What shall we have in the 21st century?

3 Physics of information

This section presents an elementary introduction into the information theory
from the viewpoint of a natural scientist. It re-tells the story of statistical
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physics using a different language, which lets us to see the Boltzmann and
Gibbs entropies in a new light. What I personally like about the information
viewpoint is that it erases paradoxes and makes the second law of thermo-
dynamics trivial. It also allows us to see generality and commonality in the
approaches (to partially known systems) of physicists, engineers, computer
scientists, biologists, brain researchers, social scientists, market speculators,
spies and flies. We shall see how the same tools used in setting limits on ther-
mal engines are used in setting limits on communications, measurements and
learning (which are essentially the same phenomena). We shall see how fast
widens the region of applications of the universal tool of entropy (and related
notions of relative entropy and mutual information): from physics, communi-
cations and computations to artificial intelligence and quantum computing.

3.1 Central limit theorem and large deviations

The true logic of this world is to be found in the theory of probability.
Maxwell

Here we switch from continuous thinking in terms of phase-space flows
to discrete combinatoric manipulations. As a bridge from statistical physics
to information theory, we start from a simple technical tool used in both.
Mathematics, underlying most of the statistical physics in the thermodyna-
mic limit, comes from universality, which appears upon adding independent
random numbers. The weakest statement is the law of large numbers: the
sum approaches the mean value exponentially fast. The next level is the
central limit theorem, which states that majority of fluctuations around the
mean have Gaussian probability distribution. Consideration of large rare
fluctuations requires the so-called large-deviation theory. Here we briefly
present all three at the physical (not mathematical) level.

Consider the variable X which is a sum of many independent identically
distributed (iid) random numbers X =

∑N
1 yi. Its mean value 〈X〉 = N〈y〉

grows linearly with N . Here we show that its fluctuations X−〈X〉 not excee-
ding O(N1/2) are governed by the Central Limit Theorem: (X − 〈X〉)/N1/2

becomes for large N a Gaussian random variable with variance 〈y2〉− 〈y〉2 ≡
∆. The quantities yi that we sum can have quite arbitrary statistics, the only
requirements are that the first two moments, the mean 〈y〉 and the variance
∆, are finite. Finally, the fluctuations X −〈X〉 on the larger scale O(N) are
governed by the Large Deviation Theorem that states that the PDF of X
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has asymptotically the form

P(X) ∝ e−NH(X/N) . (24)

P(X) −lnP/N

N1

N2

<X>X /N X/N

To show this, we write

P(X) =
∫
δ
(∑N

i=1 yi −X
)
P(y1)dy1 . . .P(yN) dyN

=
∫∞
−∞ dp

∫
exp

[
ıp
(∑N

i=1 yi −X
)]
P(y1)dy1 . . .P(yN) dyN

=
∫∞
−∞ dpe

−ıpX ∏N
i=1

∫
eıpyiP(yi)dyi =

∫∞
−∞ dpe

−ıpX+NG(ıp) . (25)

Here we introduced the generating function 〈e zy〉 ≡ eG(z). The derivatives of
the generating function with respect to z at zero are equal to the moments
of y, while the derivatives of its logarithm G(z) are equal to the moments of
(y − 〈y〉) called cumulants (see exercise).

For large N , the integral (25) is dominated by the saddle point z0 such
that G′(z0) = X/N . This is similar to representing the sum (9) above by its
largest term. If there are several saddle-points, the result is dominated by
the one giving the largest probability. We assume that contour of integration
can be deformed in the complex plane z to pass through the saddle pint
without hitting any singularity of G(z). We now substitute X = NG′(z0)
into −zX +NG(z), and obtain the large deviation relation (24) with

H = −G(z0) + z0G
′(z0) . (26)

We see that −H and G are related by the ubiquitous Legendre transform
(which always appear in the saddle-point approximation of the integral Fou-
rier or Laplace transformations). Note that NdH/dX = z0(X) and

N2d2H/dX2 = Ndz0/dX = 1/G′′(z0) .

The function H of the variable X/N − 〈y〉 is called Cramér or rate function
since it measures the rate of probability decay with the growth of N for every
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X/N . It is also sometimes called entropy function since it is a logarithm of
probability.

Several important properties of H can be established independently of the
distribution P(y) or G(z). It is a convex function as long as G(z) is a convex
function since their second derivatives have the same sign. It is straightforward to
see that the logarithm of the generating function has a positive second derivative
(at least for real z):

G′′(z) =
d2

dz2
ln

∫
ezyP(y) dy

=

∫
y2ezyP(y) dy

∫
ezyP(y) dy − [

∫
yezyP(y) dy]2

[
∫
ezyP(y) dy]2

≥ 0 . (27)

This uses the Cauchy-Bunyakovsky-Schwarz inequality which is a generalization of

〈y2〉 ≥ 〈y〉2. Also, H(z0) takes its minimum at z0 = 0, i.e. for X taking its mean

value 〈X〉 = N〈y〉 = NG′(0). The maximum of probability does not necessarily

coincides with the mean value, but they approach each other when N grows and

maximum is getting very sharp — this is called the law of large numbers. Since

G(0) = 0 then the minimal value of H is zero, that is the probability maximum

saturates to a finite value when N → ∞. Any smooth function is quadratic

around its minimum with H ′′(0) = ∆−1, where ∆ = G′′(0) is the variance of

y. Quadratic entropy means Gaussian probability near the maximum — this

statement is (loosely speaking) the essence of the central limit theorem. In the

particular case of Gaussian P(y), the PDF P(X) is Gaussian for any X. Non-

Gaussianity of the y’s leads to a non-quadratic behavior of H when deviations of

X/N from the mean are large, of the order of ∆/G′′′(0).

One can generalize the central limit theorem and the large-deviation approach
in two directions: i) for non-identical variables yi, as long as all variances are
finite and none dominates the limit N → ∞, it still works with the mean and
the variance of X being given by the average of means and variances of yi; ii) if
yi is correlated with a finite number of neighboring variables, one can group such
”correlated sums” into new variables which can be considered independent.

The above figure and (24,26) show how distribution changes upon adding more

numbers. Is there any distribution which does not change upon averaging, that

is upon passing from yi to
∑N
i=1 yi/N? That can be achieved for H ≡ 0, that is

for G(z) = kz, which corresponds to the Cauchy distribution P(y) ∝ (y2 + k2)−1.

Since the averaging decreases the variance, it is no surprise that the invariant

distribution has infinite variance. We shall return to distributions invariant under

summation of variables considering Renormalization Group in Section 4.3.
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Asymptotic equipartition. The above law of large numbers state that
the sum of N iid random numbers approaches its mean value as N grows.
One can also look at the given sequence y1, . . . , yN and ask: how probable it
is? Can we answer this blatantly self-referential question without seeing other
sequences? Yes, we can, if the sequence is long enough. To use the law of large
numbers we need to find what to sum. Since the numbers are independent,
then the probability of any sequence is the product of probabilities, and the
logarithm of the probability is the sum that satisfies the law of large numbers:

− 1

N
ln p(y1, . . . , yN) = − 1

N

N∑
i=1

lnP(yi) → −〈lnP(y)〉 = S(Y ) . (28)

We see that the log of probability converges to N times the entropy of y.
But how we find S(Y ) if we don’t know P(y)? For a sufficiently long se-
quence, we assume that the frequencies of different values of yi in our se-
quence give the probabilities of these values; we thus estimate P(y) and
compute S(Y ). In other words, we assume that the sequence is typical. We
then state that the probability of the typical sequence decreases with N expo-
nentially: p(y1, . . . , yN) = exp[−NS(y)]. That probability is independent of
the values y1, . . . , yN , that is the same for all typical sequences. Equivalently,
the number of typical sequences grows with N exponentially with entropy
setting the rate of growths. That focus on typical sequences, which all have
the same (maximal) probability, is known as asymptotic equipartition and
formulated as ”almost all events are almost equally probable”.

3.2 Information as a choice

”Nobody knows what entropy really is, so in a
debate you will always have an advantage.”

von Neumann to Shannon

We want to know in which of n boxes a candy is hidden, that is we
are faced with a choice among n equal possibilities. How much informa-
tion we need to get the candy? Let us denote the missing information by
I(n). Clearly, I(1) = 0, and we want the information to be a monotonically
increasing10 function of n. If we have several independent problems then

10The messages ”in box 2 out of 2” and ”in box 2 out of 22” bring the same candy but
not the same amount of information.
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information must be additive. For example, consider each box to have m
compartments. To know in which from mn compartments is the candy, we
need to know first in which box and then in which compartment inside the
box: I(nm) = I(n) + I(m). Now, we can write (Fisher 1925, Hartley 1927,
Shannon 1948)

I(n) = I(e) lnn = k lnn (29)

That information must be a logarithm is clear also from obtaining the missing
information by asking the sequence of questions in which half we find the
box with the candy, one then needs log2 n of such questions and respective
one-bit answers. If we measure information in binary choices or bits then
I(n) = log2 n, that is k−1 = ln(2). We can easily generalize the definition (29)
for non-integer rational numbers by I(n/l) = I(n)− I(l) and for all positive
real numbers by considering limits of the series and using monotonicity. So
the message carrying the single number of the lucky box with the candy
brings the information k lnn.

We used to think of information received through words and symbols.
Essentially, it is always about in which box the candy is. Indeed, if we have
an alphabet with n symbols then every symbol we receive is a choice out of n
and brings the information k lnn. That is n symbols like n boxes. If symbols
come independently then the message of the length N can potentially be one
of nN possibilities so that it brings the information kN lnn. To convey the
same information by smaller alphabet, one needs longer message. If all the
26 letters of the English alphabet were used with the same frequency then
the word ”love” would bring the information equal to 4 log2 26 ≈ 4 · 4.7 =
18.8 bits. Here and below we assume that the receiver has no other prior
knowledge on subjects like correlations between letters (for instance, everyone
who knows English, can infer that there is only one four-letter word which
starts with “lov...” so the last letter brings zero information for such people).

A

A

A

A

B

E

B

B

B

Z

Z

Z

Z

L

O

V

...

...

...

...

...

...

...

...

...

n

N

In reality, every letter brings on average even less information than log2 26
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since we know that letters are used with different frequencies. Indeed, con-
sider the situation when there is a probability pi assigned to each letter (or
box) i = 1, . . . , n. It is then clear that different letters bring different in-
formation. Let us evaluate the average information per symbol in a long
message. As N →∞ we know that the i-th letter appears Npi times in a ty-
pical sequence, that is we know that we receive the first alphabet symbol Np1

times, the second symbol Np2 times, etc. What we didn’t know and what
any message of the length N brings is the order in which different symbols
appear. Total number of orders (the number of different typical sequences)
is equal to N !/Πi(Npi)!, and the information that we obtained from a string
of N symbols is the logarithm of that number:

IN = k ln
(
N !/Πi(Npi)!

)
≈ −Nk

∑
i

pi ln pi +O(lnN) . (30)

The mean information per symbol coincides with the Gibbs entropy (14):

S(p1 . . . pn) = lim
N→∞

IN/N = −k
n∑
i=1

pi ln pi . (31)

Here we recognize the asymptotic equipartition from the previous section:
N -string brings the information, which is the log of the number of typical
strings: I = S. Note that when n → ∞ then (29) diverges while (31) may
well be finite.

Alternatively, one can derive (31) without any mention of randomness.
Consider again n boxes and define pi = mi/

∑n
i=1mi = mi/M , where mi is

the number of compartments in the box number i. When each compartment
can be chosen independently of the box it is in, the i-th box is chosen with
the frequency pi, that is a given box is chosen more frequently if it has more
compartments . The information on a specific compartment is a choice out
of M and brings information k lnM . That information must be a sum of the
information about the box In plus the information about the compartment,
lnmi, summed over the boxes: k

∑n
i=1 pi lnmi. That gives the information

In about the box (letter) as the difference:

In = k lnM−k
n∑
i=1

pi lnmi = k
n∑
i=1

pi lnM−k
n∑
i=1

pi lnmi = −k
n∑
i=1

pi ln pi = S .

The mean information (31) is zero for delta-distribution pi = δij; it is
generally less than the information (29) and coincides with it only for equal

34



probabilities, pi = 1/n, when the entropy is maximum. Indeed, equal pro-
babilities we ascribe when there is no extra information, i.e. in a state of
maximum ignorance. In this state, a message brings maximum information
per symbol; any prior knowledge can reduce the information. Mathemati-
cally, the property

S(1/n, . . . , 1/n) ≥ S(p1 . . . pn) (32)

is called convexity. It follows from the fact that the function of a single
variable s(p) = −p ln p is strictly concave since its second derivative, −1/p,
is everywhere negative for positive p. For any concave function, the average
over the set of points pi is less or equal to the function at the average value
(so-called Jensen inequality):

1

n

n∑
i=1

s (pi) ≤ s

(
1

n

n∑
i=1

pi

)
. (33)

−Wln W

A (A+B)/2 B

S[(A+B)/2]>[S(A)+S(B)]/2

W

From here one gets the entropy inequality:

S(p1 . . . pn) =
n∑
i=1

s (pi) ≤ ns

(
1

n

n∑
i=1

pi

)
= ns

(
1

n

)
= S

(
1

n
, . . . ,

1

n

)
. (34)

The relations (33-34) can be proven for any concave function. Indeed, the
concavity condition states that the linear interpolation between two points
a, b lies everywhere below the function graph: s(λa+ b− λb) ≥ λs(a) + (1−
λ)s(b) for any λ ∈ [0, 1], see the Figure. For λ = 1/2 it corresponds to (33)
for n = 2. To get from n = 2 to arbitrary n we use induction. For that end,
we choose λ = (n− 1)/n, a = (n− 1)−1∑n−1

i=1 pi and b = pn to see that

s

(
1

n

n∑
i=1

pi

)
= s

(
n− 1

n
(n− 1)−1

n−1∑
i=1

pi +
pn
n

)
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≥ n− 1

n
s

(
(n− 1)−1

n−1∑
i=1

pi

)
+

1

n
s (pn)

≥ 1

n

n−1∑
i=1

s (pi) +
1

n
s (pn) =

1

n

n∑
i=1

s (pi) . (35)

In the last line we used the truth of (33) for n− 1 to prove it for n.

You probably noticed that (29) corresponds to the microcanonical Boltz-
mann entropy (8) giving information/entropy as a logarithm of the number
of states, while (31) corresponds to the canonical Gibbs entropy (14) giving
it as an average. An advantage of Gibbs-Shannon entropy (31) is that is
defined for arbitrary distributions, not necessarily equilibrium.

3.3 Communication Theory

After we learnt, what information messages bring on average, we are ready
to discuss the best ways to transmit them. That brings us to the Communi-
cation Theory, which is interested in two key issues, speed and reliability:

i) How much can a message be compressed; i.e., how redundant is the
information? In other words, what is the maximal rate of transmission in
bits per symbol?

ii) At what rate can we communicate reliably over a noisy channel; i.e.,
how much redundancy must be incorporated into a message to protect against
errors?

Both questions concern redundancy – how unexpected is every letter of
the message, on the average. Entropy quantifies redundancy. We have seen
that a communication channel transmitting independent symbols on average
transmits one unit of the information (31) per symbol. Receiving letter
(box) number i through a binary channel (transmitting ones and zeros)11

brings information log2(1/pi) = log2M − log2mi bits. Indeed, the remai-
ning choice (missing information) is between mi compartments. The entropy
−∑z

i=a pi log2 pi is the mean information content per letter. Less probable
symbols have larger information content, but they happen more rarely.

So the entropy is the mean rate of the information transfer, since it is
the mean growth rate of the number of typical sequences. What about the
maximal rate of the information transfer? Following Shannon, we answer
the question i) statistically, which makes sense in the limit of very long

11Binary code is natural both for signals (present-absent) and for logic (true-false).
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messages, when one can focus on typical sequences, as we did at the end
of the Section 3.1 and in deriving (30). Consider for simplicity a message of
N bits, where 0 comes with probability 1 − p and 1 with probability p. To
compress the message to a shorter string of letters that conveys essentially
the same information it suffices to choose a code that treats effectively the
typical strings — those that contain N(1 − p) zeroes and Np ones. The
number of such strings is given by the binomial CN

Np which for large N is

2NS(p), where S(p) = −p log2 p − (1 − p) log2(1 − p). The strings differ by
the order of appearance of 0 and 1. To distinguish between these 2NS(p)

messages, we encode any one using a binary string with lengths starting from
one and ending at NS(p) bits. For example, we encode by a one-bit word
the message where all Np ones are at the beginning followed by all N(1− p)
zeroes, then by two-bit word the message with one hole, etc. The maximal
word length NS(p) is less than N , since 0 ≤ S(p) ≤ 1 for 0 ≤ p ≤ 1. In other
words, to encode all 2N sequences we need words of N bits, but to encode all
typical sequences, we need only words up to NS(p) bits. We indeed achieve
compression with the sole exception of the case of equal probability where
S(1/2) = 1. True, the code must include a bit more to represent atypical
messages, but in the limit of large N the chance of their appearance and their
contribution to the rate of transmission are negligible. Therefore, entropy
sets both the mean and the maximal rate in the limit of long sequences. The
idea of typical messages in the limit N →∞ is an information-theory analog
of ensemble equivalence in the thermodynamic limit. You may find it bizarre
that one uses randomness in treating information communications, where
one usually transfers non-random meaningful messages. One of the reasons
is that encoding program does not bother to ”understand” the message, and
treats it as random. Draining the words of meaning is necessary for devising
universal communication systems.

Maximal rate of transmission correspond to the shortest mean length of
the codeword. Consider an alphabet with q symbols and the source with the
probability distribution p(i), i = 1, . . . , q. Then Shannon proved that the
shortest mean length of the codeword ` is bounded by

−
∑
i

p(i) logq p(i) ≤ ` < −
∑
i

p(i) logq p(i) + 1 . (36)

Of course, not any encoding guarantees the maximal rate of transmission.
Designating sequences of the same length to objects with different probabi-
lities is apparently sub-optimal. To make the mean word length shorter and
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achieve signal compression, one codes frequent objects by short sequences and
infrequent ones by more lengthy combinations - lossless compressions like zip,
gz and gif work this way. Consider a fictional creature whose DNA contains
four bases A,T,C,G occurring with probabilities pi listed in the table:

Symbol pi Code 1 Code 2
A 1/2 00 0
T 1/4 01 10
C 1/8 10 110
G 1/8 11 111

We want a binary encoding for the four bases. Since there are exactly four
two-bit words, one can suggest the Code 1, which has exactly 4 words and
uses 2 bits for every base. Here the word length is 2. However, it is straig-
htforward to see that the entropy of the distribution S = −∑4

i=1 pi log2 pi is
lower that 2. One then may suggest a variable-length Code 2 (an example of
the so-called Huffman code). It is built in the following way. We start from
the least probable C and G, which we want to have the longest codewords of
the same length differing by one (last) bit that distinguishes between the two
of them. We then can combine C and G into a single source symbol with the
probability 1/4, that is coinciding with the probability of T. To distinguish
from C,G, we code T by two-bit word placing 0 in the second position. Now,
we can code A by one-bit word 0 to distinguish it from T,C,G. Alternatively,
one can start from the first bit ascribing 0 to A and 1 to T,C,G, then add
the second bit to distinguish T from C,G and finish with adding the third
bit to distinguish between C and G. Home exercise is to see which code, 1 or
2, uses less bits per base on average. The most efficient code has the length
of the mean codeword (the number of bits per base) equal to the entropy of
the distribution, which determines the fastest mean transmission rate, that
is the shortest mean codeword length.

To make yourself comfortable with the information brought by fractions of
a bit, think about the decrease of uncertainty. One bit halves the uncertainty.
For example, for a uniform distribution, receiving one bit shrinks its interval
by the factor 2−1. Receiving half-bit shrinks the interval of possible values
by the factor 2−1/2 ≈ 0.7. And, of course, receiving H bits shrinks the
uncertainty interval to 2−H fraction of its original length.

The inequality (32) tells us, in particular, that using an alphabet is not
optimal for the information transmission rate as long as the probabilities
of the letters are different. We can use less symbols but variable codeword
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length. Morse code uses just three symbols (dot, dash and space) to encode
any language12. In English, the probability of ”E” is 13% and of ”Q” is 0.1%,
so Morse encodes ”E” by a single dot and ”Q” by ”− − ·−” (first British
telegraph managed to do without C,J,Q,U,X). One-letter probabilities give
for the written English language the information per symbol as follows:

−
z∑
i=a

pi log2 pi ≈ 4.11 bits ,

which is lower than log2 26 = 4.7 bits.

3.4 Correlations in the signals

Apart from one-letter probabilities, one can utilize more knowledge about the
language by accounting for two-letter correlation (say, that ”Q” is always
followed by ”U”, ”H” often follows ”T”, etc). That will further lower the
entropy.

A simple universal model with neighboring correlations is a Markov chain.
It is specified by the conditional probability p(j|i) that the letter i is follo-
wed by j. For example p(U |Q) = 1. The probability is normalized for
every i:

∑
j p(j|i) = 1. The matrix pij = p(j|i), whose elements are posi-

tive and in every column sum to unity, is called stochastic. The vector of
probabilities p(i) and the transition matrix pij are not independent but are
related by the detailed balance: p(i)pij = p(j)pji. Summing over j, we obtain
p(i) =

∑
p(j)pji, that is p = {p(a), . . . p(z)} is an eigenvector with the unit

eigenvalue of the matrix pij.
The probability of any N -string is then the product of N − 1 transition

probabilities times the probability of the initial letter. As in (28), minus the
logarithm of the probability of a long N -string grows linearly with N :

log2 p(i1, . . . , iN) = log2 p(i1) +
N∑
k=2

log2 p(ik+1|ik) . (37)

Therefore, the number of typical sequences starting from i grows with N ex-
ponentially, as 2NS, where S is the conditional entropy −∑j p(j|i) log2 p(j|i),

12Great contributions of Morse were one-wire system and the simplest possible encoding
(opening and closing the circuit), far more superior to multiple wires and magnetic needles
of Ampere, Weber, Gauss and many others.
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which must be averaged over different i with their probabilities p(i). That
way we express the language entropy via p(i) and p(j|i) by averaging over i
the entropy of the transition probability distribution:

S = −
∑
i

pi
∑
j

p(j|i) log2 p(j|i) . (38)

That formula defines the information rate of the Markov source. We shall
further discuss Markov chains describing Google PageRank algorithm in
Section 5.3 below.

One can go beyond two-letter correlations and statistically calculate the
entropy of the next letter when the previous N − 1 letters are known (Shan-
non 1950). As N increases, the entropy approaches the limit which can be
called the entropy of the language. Long-range correlations and the fact that
we cannot make up words further lower the entropy of English down to ap-
proximately 1.4 bits per letter, if no other information given. Comparing
1.4 and 4.7, we conclude that the letters in an English text are about 70%
redundant. About the same value one finds asking people to guess the letters
in a text one by one, which they do correctly 70% of the time. This redun-
dancy makes possible data compression, error correction and crosswords. It
is illustrated by the famous New York City subway poster of the 1970s:

”If u cn rd ths u cn gt a gd jb w hi pa!”

Note in passing that the human language encodes meaning not in separate
letters but in words. An insight into the way we communicate is given by the
frequency distribution of words and their meanings (Zipf 1949). It was found
empirically that if one ranks words by the frequency of their appearance in
texts, then the frequency decreases as an inverse rank. For example, the first
place with 7% takes ”the”, followed by ”of” with 3.5%, ”and” with 1.7%,
etc.

As we have seen, knowing the probability distribution one can compute
entropy, which determines the most efficient rate of encoding. One can turn
tables and estimate the entropy of the data stream looking for its most com-
pact lossless encoding. It can be done in a one-pass (online) way, that is
not looking at the whole string of data, but optimizing encoding as one pro-
cess the string from beginning to end. There are several such algorithms
called adaptive codes (Lempel-Ziv, deep neural networks, etc). These codes
are also called universal, since they do not require a priori knowledge of the
distribution.
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So what is so special about alphabet? Redundant encodings are many. Note
first that the human language encodes meaning not in separate letters but in words.
An insight into the way we communicate is given by the frequency distribution of
words and their meanings (Zipf 1949). It was found empirically that if one ranks
words by the frequency of their appearance in texts, then the frequency decreases
as an inverse rank. For example, the first place with 7% takes ”the”, followed by
”of” with 3.5%, ”and” with 1.7%, etc.

The oldest system of writing were logographic systems where every word or
morpheme requires a separate symbol - logogram. Several independent such sys-
tems were developed: Egyptian hieroglyphics, cuneiform, Chinese characters, etc.
Scribes and readers then learned thousands of symbols, which necessarily were re-
stricted to a small part of society. The great democratizing invention of alphabetic
writing, which dramatically improved handling of information (and irreversibly
changed the ways we speak, hear and remember), was done only once in history.
All known alphabets derive from that seminal (Semitic) script. The idea was to
make writing not only conveying the meaning but also reproducing (extremely
poorly!) the way the speech sounds. Of course, all known logographies have some
phonetic component, generally based on the rebus principle. Alphabet makes a
complete transition using phonograms instead of logograms. The way we hear is
related to the notion of phonemes. Linguists define the phoneme as the smallest
acoustic unit that makes a difference in meaning. Their numbers in different lan-
guages are subject to disagreements but generally are in tens. For example, most
estimates for English give 45, that is comparable with the number of letters in the
alphabet.

Another encoding of profound importance is a positional numeral system, ba-

sed on the fundamental discovery that number N can be encoded by logN symbols

instead of N times repeating the same mark. One cannot overestimate the im-

portance of encoding where the value depends on the position, since it already

implies algebraic operations. Indeed, reading (decoding) requires multiplying and

adding: 2021 = 2× 1000 + 2× 10 + 1. It then allowed simple automatic rules for

computations (formulated by Persian al-Khwarizmi, from whose name the word

algorithm appeared).

3.5 Mutual information as a universal tool

Answering the question i) in Sect. 3.3, we have found that the entropy of
the set of symbols to be transferred determines the minimum mean number
of bits per symbol, that is the maximal rate of information transfer. In this
section, we turn to the question ii) and find out how this rate is lowered if
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the transmission channel can make errors. How much information then is
lost on the way? In this context one can treat measurements as messages
about the value of the quantity we measure. One can also view storing and
retrieving information as sending a message through time rather than space.

When the channel is noisy the statistics of inputs P (B) and outcomes
P (A) are generally different, that is we need to deal with two probability
distributions and the relation between them. Treating inputs and outputs as
taken out of distributions works for channels/measurements both with and
without noise; in the limiting cases, the distribution can be uniform or peaked
at a single value. Relating two distributions needs introducing conditional
and relative entropies and mutual information, which presently are the most
powerful and universal tools of information theory.

The relation between the message (measurement) Ai and the event (quan-
tity) Bj is characterized by the conditional probability (of Bj in the presence
ofAi), denoted P (Bj|Ai). For everyAi, this is a normalized probability distri-
bution, and one can define its entropy S(B|Ai) = −∑j P (Bj|Ai) log2 P (Bj|Ai).
Since we are interested in the mean quality of transmission, we average this
entropy over all values of Aj, which defines the so-called conditional entropy:

S(B|A) =
∑
i

P (Ai)S(B|Ai) = −
∑
ij

P (Ai)P (Bj|Ai) log2 P (Bj|Ai)

= −
∑
ij

P (Ai, Bj) log2 P (Bj|Ai) . (39)

We already encountered it in (38) considering correlations between subse-
quent terms in the sequence. In this subsection we use conditional proba-
bility between input and output. Here we related the conditional probabi-
lity to the joint probability P (Ai, Bj) by the evident formula P (Ai, Bj) =
P (Bj|Ai)P (Ai). The conditional entropy measures what on average remains
unknown after the value of A is known. The missing information was S(B)
before the measurement and is equal to the conditional entropy S(B|A) after
it. Then what the measurements bring on average is their difference called
the mutual information:

I(A,B) = S(B)− S(B|A) =
∑
ij

P (Ai, Bj) log2

[
P (Bj|Ai)
P (Bj)

]
. (40)

Indeed, information is a decrease in uncertainty. Non-negativity of the mu-
tual information means that on average measurements lower uncertainty by
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increasing the conditional probability relative to unconditional : 〈log2[P (Bj|Ai)/P (Bj)]〉 ≥
0. For example, let B be a choice out of n equal possibilities: P (B) = 1/n
and S(B) = log2 n. If for every Ai we can have m different values of B, then
S(B|A) = log2m and I(A,B) = log2(n/m) bits. When there is one-to-one
correspondence, m = 1 and A tells us all we need to know about B.

The formula P (Ai, Bj) = P (Bj|Ai)P (Ai) gives the chain rule,

S(A,B)=S(A)+S(B|A)=S(B)+S(A|B), (41)
S(A)       S(A,B)           S(B)

S(A|B)      I(A,B)        S(B|A)
and I(A,B) in a symmetric form:

I(A,B) =S(B)−S(B|A)=S(A)+S(B)−S(A,B) = S(A)− S(A|B) . (42)

Exactly like in the above m− n example, when A is a choice out of k equal
possibilities and for every input Bi we can have l different equally probable
values of A, then S(A|B) = log2 l and I(A,B) = S(A)−S(A|B) = log2(k/l)
bits.

To avoid confusion, let us state the obvious: there is no symmetry bet-
ween A and B. They could be of very different nature - one is the position of
an atom, another is the reading of the device, for instance. Neither their en-
tropies, S(A) and S(B), nor the conditional entropies, S(B|A) and S(A|B),
are generally equal or even comparable. Yet the degree of their correlation
I(A,B) is a symmetric function. It is important that the mutual information
I(A,B) is a universal measure of correlation, insensitive to the nature of the
relationship between A and B, whether it is linear or nonlinear, direct or
inverse, etc. On the contrary, correlation functions cannot serve as a uni-
versal measure: for instance, 〈AB〉 is a proper measure of correlation for a
Gaussian distribution only.

When A and B are independent, the joint entropy is a sum, and the in-
formation is zero. When they are dependent, P (B,A) > P (A)P (B), so that
that the information is indeed positive. When A,B are related deterministi-
cally, S(A) = S(B) = S(A,B) = I(A,B), where S(A) = −∑i P (Ai) log2 P (Ai),
etc. And finally, since P (A|A) = 1 then the mutual information of a random
variable with itself is the entropy: I(A,A) = S(A). So one can call entropy
self-information. Non-negativity of the mutual information also gives the
so-called sub-additivity of entropy:

S(A) + S(B) > S(A,B) . (43)
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If the mutual information is what on average brings an imperfect channel,
how reliable it is? It is tempting to assume that the mutual information
plays for noisy channels the same role the entropy plays for ideal channels,
in particularly, sets the maximal rate of reliable communication in the limit
of long mesages, thus answering the question ii) from the Section 3.3 Indeed,
if there are different outputs for the same input, like in the above simple
k − l example, the rate of information transfer is lower than for a one-to-
one correspondence, since we need to divide our k outputs into groups of
l, distinguishing only between the groups. More formally, for each typical
N -sequence of independently chosen B-s, we have [P (A|B)]−N = 2NS(A|B)

possible output sequences, all of them equally likely. To get the rate of
the useful information about distinguishing the inputs, we need to divide the
total number of typical outputs 2NS(A) into sets of size 2NS(A|B) corresponding
to different inputs. Therefore, we can distinguish at most 2NS(A)/2NS(A|B) =
2NI(A,B) sequences of the length N , which sets I(A,B) as the maximal rate
of information transfer.

However, that was a rather trivial case when inputs can be distinguished
from outputs without errors. Real problem start when errors are made, for
instance, when a single output can correspond to different inputs. Here, one
may argue that taking the limit of large N does not help since the channel
continues to make errors all the time. And yet Shannon have shown (in the
co-called noisy channel theorem) that one can keep a finite transmission rate
and yet make the probability of error arbitrary small at the limit N → ∞.
The idea is that to correct errors one needs to send extra bits, so to get
the rate we need to compute how many bits are devoted to error correction
and how many to transferring the information itself. To do that, we need
to characterize the channel itself as specified by P (B|A). Let us maximize
I(A,B) over all choices of the source statistics P (B) and call it the Shannon’s
channel capacity, which quantifies the quality of communication systems or
measurements in bits per symbol:

C = max
P (B)

I(A,B) .
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The channel capacity is the log of the maximal number of distinguishable
signals. For example, if our channel transmits the binary input exactly (zero
to zero, one to one), then the capacity is 1 bit, which is achieved by choosing
P (B = 0) = P (B = 1) = 1/2, see the left panel in the Figure. Let us stress
that if P (B) 6= P (A), then the average rate is less that the capacity (one
bit per symbol) despite the channel being perfect. Even if the channel has
many outputs for every input out of n, the capacity is still log2 n, if those
outputs are non-overlapping for different inputs, so that the input can be
determined without an error and P (B|A) = 1. Such case is presented in
the middle panel in the Figure. In this case, the transfer rate is determined
by the number of B-states; from the perspective of A-states, the rate is
S(A) − S(A|B) = 2 − 1 = 1. Like the mutual information, the capacity
is lowered when the same outputs appear for different inputs, say, different
groups of m inputs each gives the same output, so that P (B|A) = 1/m. In
this case, one achieves error-free transition choosing only one input symbol
from each of n/m groups, that is using P (B) = m/n for the symbols chosen
and P (B) = 0 for the rest; the capacity is then indeed C = log2(n/m) bits
(in the right panel of the Figure n = 6, m = 2). Lowered capacity means
increased redundancy, that is a need to send more symbols to convey the
same information. As mentioned, shorter alphabet requires longer messages.

Let us treat at last to the most generic case, when noise does not allow
to separate inputs into groups with completely disjoint outputs, so errors
always present. It was thought that in such cases it is impossible to make
probability of error arbitrarily small when sending information with a finite
rate R. Shannon have shown that it is possible, if there is any correlation
between output A and input B, that is C > 0. Then the probability of
an error can be made 2−N(C−R), that is asymptotically small in the limit
of N → ∞, if the rate is lower than the channel capacity. This (arguably
the most important) result of the communication theory is rather counter-
intuitive: if the channel makes errors all the time, how one can decrease
the error probability treating long messages? Shannon’s argument is based
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on typical sequences and average equipartition, that is on the law of large
numbers (by now familiar to you).

For example, if in a binary channel the probability of every single bit
going wrong is q, then A is binary random variable with equal probabilities
of 0 and 1, so that S(A) = log2 2 = 1. Conditional probabilities are P (1|0) =
P (0|1) = q and P (1|1) = P (0|0) = 1 − q, so that S(A|B) = S(B|A) =
S(q) = −q log2 q − (1 − q) log2(1 − q). The mutual information I(A,B) =
S(A)−S(A|B) = 1−S(q). This is actually the maximum, that is the channel
capacity: C = maxP (B)[S(B) − S(B|A)] = 1 − S(q), because the maximal
entropy is unity for a binary variable B. Let us now see how the rate of
transmission is bounded from above by the capacity. In a message of length
N , there are on average qN errors and there are N !/(qN)!(N−qN)! ≈ 2NS(q)

ways to distribute them. We then need to devote some m bits in the message
not to data transmission but to error correction. Apparently, the number
of possibilities provided by these extra bits, 2m, must exceed 2NS(q), which
means that m > NS(q), and the transmission rate R = (N − m)/N <
1 − S(q). The channel capacity is zero for q = 1/2 and is equal to 0.988
bits per symbol for q = 10−3. The probability of errors is binomial with

the mean number of errors qN and the standard deviation σ =
√
Nq(1− q).

If we wish to bound the error probability from above, we must commit to
correcting more than the mean number of errors, making the transmission
rate smaller than the capacity.

The conditional entropy S(B|A) is often independent of the input statis-
tics P (B) like in the above example. Maximal mutual information, that is
capacity, is then achieved for maximal S(B). If no other restrictions imposed,
that corresponds to the uniform distribution P (B).

When the measurement/transmission noise ξ is additive, that is the out-
put is A = g(B) + ξ with an invertible function g, we have S(A|B) = S(ξ)
and

I(A,B) = S(A)− S(ξ) . (44)

The more choices of the output are recognizable despite the noise, the more
is the capacity of the channel. When the conditional entropy S(A|B) is
given, then to maximize the mutual information we need to choose the me-
asurement/coding procedure (for instance, g(B) above) that maximizes the
entropy of the output S(A).

We have seen in the previous section that the mutual information bet-
ween letters lowered the entropy of the language from the one-letter entropy,
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−∑i p(i) log p(i). That lowering is brought by the knowledge of the con-
ditional probabilities p(j|i), p(j|i, k . . .), which is more than knowledge of
p(i).

One also uses P (A,B) = P (B|A)P (A) = P (A|B)P (B) for estimating
the conditional probability of the event B given the marginal probability of
the measurements A:

P (B|A) = P (B)
P (A|B)

P (A)
. (45)

For example, experimentalists measure the sensory response of an animal to
the stimulus, which gives P (A|B)/P (A) or build a robot with the prescribed
response. Then they go to the natural habitat of that animal/robot and
measure the distribution of stimulus P (B) (see the example at the beginning
of Section 4.4). After that one obtains the conditional probability (45) that
allows animal/robot to perceive the environment and function effectively in
that habitat.

Gaussian Channel. As an illustration, consider a linear noisy channel:
A = B+ξ, such that the noise is independent of B and Gaussian with 〈ξ〉 = 0
and 〈ξ2〉 = N . Then P (A|B) = (2πN )−1/2 exp[−(A−B)2/2N ]. If in addition
we have a Gaussian input signal with P (B) = (2π)−1/2 exp(−B2/2S), then
P (A) = [2π(N + S)]−1/2 exp[−A2/2(N + S)]. Now, using (45) we can write

P (B|A) =

√
N + S

2N
exp

[
−S +N

2N

(
B − A

S +N

)2
]
.

In particular, the estimate of B is linearly related to the measurement A:

B̄ =
∫
BP (B|A) dB =

A

S +N
= A

SNR

1 + SNR
, (46)

where signal to noise ratio is SNR = S/N . The rule (46) makes sense:
To ”decode” the output of a linear detector we use the unity factor at high
SNR, while at low SNR we scale down the output since most of what we are
seeing must be noise. As is clear from this example, linear relation between
the measurement and the best estimate requires two things: linearity of the
input-output relation and Gaussianity of the statistics. Let us now find the
mutual information (44):

I(A,B)=S(A)−S(A|B)=S(A)−S(B+ξ|B)=S(A)−S(ξ|B)=S(A)−S(ξ)

= 1
2

[log2 2πe(S +N )− log2 2πeN ] = 1
2

log2(1 + SNR) . (47)

47



Here we used the formula for the entropy of the Gaussian distribution. The
capacity of such a channel depends on the input statistics. One increases
capacity by increasing the input signal variance, that is the dynamic range
relative to the noise. For a given input variance, the maximal mutual in-
formation (channel capacity) is achieved by a Gaussian input, because the
Gaussian distribution has maximal entropy for a given variance. Indeed,
varying

∫
dxρ(x)(λx2 − ln ρ) with respect to ρ we obtain ρ(x) ∝ exp(−λx2).

Examples of redundancy. How redundant is the genetic code? There
are four bases, which must encode twenty amino acids. There are 42 two-
letter words, which is not enough. The designer then must use a triplet code
with 43 = 64 words, so that the redundancy factor is about 3. Number
of ways to encode a given amino acid is approximately proportional to its
frequency of appearance.

What are the error rates in the transmission of the genetic code? Typical
energy cost of a mismatched DNA base pair is that of a hydrogen bond,
which is about ten times the room temperature. If the DNA molecule was in
thermal equilibrium with the environment, thermal noise would cause error
probability e−10 ' 10−4 per base. This is deadly. A typical protein has
about 300 amino acids, that is encoded by about 1000 bases; we cannot
have mutations in every tenth protein. Moreover, synthesis of RNA from
DNA template and of proteins on the ribosome involve comparable energies
and could cause comparable errors. That means that Nature operates a
highly non-equilibrium state, so that bonding involves extra irreversible steps
and burning more energy. This way of sorting molecules is called kinetic
proofreading (Hopfield 1974, Ninio 1975) and is very much similar to the
Maxwell demon discussed below in Section 4.2.

Another example of redundancy for error-protection is the NATO pho-
netic alphabet used by the military and pilots. To communicate through a
noisy acoustic channel, letters are encoded by full words: A is Alpha, B is
Bravo, C is Charlie, etc.

Mutual information also sets the limit on the data compression A → C,
if coding has a random element so that its entropy S(C) is nonzero. In this
case, the maximal data compression, that is the minimal coding length in
bits, is min I(A,C).
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Possible communication

              schemes

transmission

limit

compression

limit

min I(A,C) max I(A,B)

Take-home lesson: entropy of the symbol set is the ultimate data com-
pression rate; channel capacity is the ultimate transmission rate. Since we
cannot compress below the entropy of the alphabet and cannot transfer faster
than the capacity, then transmission is possible only if the former exceeds
the latter, which requires positivity of the mutual information.

3.6 Hypothesis testing and relative entropy

All empirical sciences need a quantitative tool for confronting data with
hypothesis. One (rational) way to do that is statistical: update prior beliefs
in light of the evidence. It is done using conditional probability. Indeed, for
any e and h, we have P (e, h) = P (e|h)P (h) = P (h|e)P (e). If we now call h
hypothesis and e evidence, we obtain the rule for updating the probability
of hypothesis to be true, which is the Bayes’ rule:

P (h|e) = P (h)
P (e|h)

P (e)
. (48)

That is the new (posterior) probability P (h|e) that the hypothesis is correct
after we receive the data e is the prior probability P (h) times the quotient
P (e|h)/P (e) which presents the support e provides for h. Without exag-
geration, one can say that most errors made by experimentalists in science
and most wrong conclusions made by conspiracy theorists are connected to
unfamiliarity with this simple formula. For example, your hypothesis is the
existence of a massive international conspiracy to increase the power of go-
vernments and the evidence is COVID pandemic. In this case P (e|h) is high:
a pandemic provoking increase of the state power is highly likely given such
a conspiracy exists. This is presumably why some people stop thinking here
and accept the hypothesis. But of course, absent such an event, the prior
probability P (h) could be vanishingly small. Only sequence of probability-
increasing events may lead us to accept the hypothesis.

If choosing between two mutually exclusive hypotheses, h1 and h2, then

P (h1|e) = P (h1)
P (e|h1)

P (e)
= P (h1)

P (e|h1)

P (h1)P (e|h1) + P (h2)P (e|h2)
. (49)
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Indeed, because our hypothesis are mutually exclusive, the total probabi-
lity of the evidence consists of two terms: P (e) = P (e, h1) + P (e, h2) =
P (h1)P (e|h1) +P (h2)P (e|h2). To see the combination of probabilities which
defines the posterior probability of the hypothesis being true, it is instructive
to present the result in the following form:

1

P (h1|e)
= 1 +

P (h2)P (e|h2)

P (h1)P (e|h1)
. (50)

For example, checking an a priori improbable hypothesis, P (h1)� P (h2), it
is better to design experiment which minimizes P (e|h2) rather than maximi-
zes P (e|h1), that is rules out alternative rather than supports the hypothesis.
This is why even good tests, with P (e|h1) close to unity and P (e|h2) small,
are not very reliable at the beginning of a pandemic, when P (h1) is small.
The same is true for drug test in a mostly clean population. Suppose that
a drug test is 99% sensitive and 99% specific. That is, the test will produce
99% true positive results for drug users (hypothesis h1) and 99% true nega-
tive results for clean people (hypothesis h2). If we denote e the positive test
result, then P (e|h1) = 0.99 and P (e|h2) = 1 − 0.99 = 0.01. Suppose that
0.5% of people are users of the drug, that is P (h1) = 0.005. The probability
that a randomly selected individual with a positive test is a drug user is
0.005 · 0.99/(0.99 · 0.005 + 0.01 · 0.995) ≈ 0.332 that is less that half. The
result is more sensitive to specificity approaching unity, when P (e|h2) → 0,
than to sensitivity.

There is evidence that perception of our brain is inferential, that is based on the

prediction and hypothesis testing. Among other things, this is manifested by the

long known phenomenon of binocular rivalry and the recently established fact that

signals between brain and sensory organs travel in both directions simultaneously.

It is then likely that even our unconscious activity uses rational Bayes’ rule, where

e is sensory input. See e.g. ”The Predictive Mind” by J. Hohwy. Observing our

own mental processes gives us both the idea of logic and of statistical inference.

Note a shift in the interpretation of probability. Traditionally, mathe-
maticians and gamblers treated probability as the frequency of outcomes in
repeating trials. Bayesian approach defines probability as a degree of belief;
that definition allows wider applications, particularly when we cannot have
repeating identical trials. The approach may seem unscientific since it is de-
pendent on the prior beliefs, which can be subjective. However, repeatedly
subjecting our hypothesis to variable enough testing, we hope that the re-
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sulting flow in the space of probabilities will eventually come close to a fixed
point independent of the starting position.

Relative Entropy. If the true distribution is p but our hypothetical distri-
bution is q, what number N of trials is sufficient to invalidate our hypothesis?
For that we need to estimate the probability of the stream of data observed.
We shall observe the result i number of times which is piN and judge the
probability of it happening as qpiNi times the number of sequences with those
frequencies:

P =
∏
i

qpiNi
N !∏

j(pjN)!
. (51)

This is the probability of our hypothetical distribution being true. Conside-
ring limit of large N we obtain a large-deviation-type relation like (24):

P ∝ exp

[
−N

∑
i

pi ln(pi/qi)

]
. (52)

The probability of not-exactly-correct hypothesis to approximate the data
exponentially decreases with the number of trials. The rate of that decrease
is the relative entropy (also called Kullback-Liebler divergence):

D(p|q) =
∑
i

pi ln(pi/qi) = 〈ln(p/q)〉 . (53)

The relative entropy determines how many trials we need: we prove our
hypothesis wrong when ND(p|q) becomes large. The closer is our hypothesis
to the true distribution, the larger is the number of trials needed. On the
other hand, when ND(p|q) is not large, our hypothetical distribution is just
fine.

Relative entropy also quantifies how close to reality is the asympto-
tic equipartition estimate (28) of the probability of a given sequence. As-
sume that we have an N -sequence where the values/letters appear with
the frequencies qk, where k = 1, . . . , K. Then the asymptotic equipar-
tition (the law of large numbers) advices us that the probability of that
sequence is

∏
k q

Nqk
k = exp(N

∑
k qk ln qk) = exp[−NS(q)]. But the fre-

quencies we observe in a finite sequence are generally somewhat different
from the true probabilities of the {pk}. Then the positivity of the re-
lative entropy guarantees that the asymptotic equipartition underestima-
tes the probability of the sequence, the true probability is actually hig-
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her:
∏
k p

Nqk
k = exp(N

∑
k qk ln pk) = exp[N

∑
k(qk ln qk + qk ln(pk/qk))] =

exp{−N [S(q)−D(q|p)]}.
How many different probability distributions {qk} (called types in information

theory) exist for an N -sequence? Since qk = n/N , where n can take any of
N + 1 values 0, 1, . . . , N then the number of possible K-vectors {qk} is at most
(N + 1)K , which grows with N only polynomially, where the alphabet size K sets
the power. Since the number of sequences grows exponentially with N , then there
is an exponential number of possible sequences for each type. The probability to
observe a given type (empirical distribution) is determined by the relative entropy
P{qk} ∝ exp[−ND(q|p)].

The relative entropy measures how different is the hypothetical distribution

q from the true distribution p. Note that D(p|q) is not the difference between

entropies (which just measures difference in uncertainties). The relative entropy is

not a true geometrical distance since it does not satisfy the triangle inequality and

is asymmetric, D(p|q) 6= D(q|p). Indeed, there is no symmetry between reality

and our version of it (no matter how some philosophers want us to believe). Yet

D(p|q) has important properties of a distance. Since the probability does not

exceed unity, the relative entropy is non-negative, it turns into zero only when

distributions coincide, that is pi = qi for all i. This can be readily demonstrated

using the simple inequality lnx ≤ x− 1, which turns into equality only for x = 1.

Mutual information is the particular case of the relative entropy when
we compare the true joint probability p(xi, yj) with the distribution made
out of their separate measurements q(xi, yj) = p(xi)p(yj), where p(xi) =∑
j p(xi, yj) and p(yj) =

∑
i p(xi, yj): D(p|q) = S(X) + S(Y ) − S(X, Y ) =

I(X, Y ) ≥ 0. If i in pi runs from 1 to M we can introduce D(p|u) =
log2M − S(p), where u is a uniform distribution. That allows one to show
that both relative entropy and mutual information inherit from entropy con-
vexity properties. You are welcome to prove that D(p|q) is convex with
respect to both p and q, while I(X, Y ) is a concave function of p(x) for fixed
p(y|x) and a convex function of p(y|x) for fixed p(x). In particular, convexity
is important for making sure that the extremum we are looking for is unique
and lies at the boundary of allowed states.

Relative entropy also measures the price of non-optimal coding. As we dis-

cussed before, a natural way to achieve an optimal coding would be to assign

the length to the codeword according to the probability of the object encoded:

li = − log2 pi. Indeed, the information in bits about the object, log2(1/pi), must

be exactly equal to the length of its binary encoding. For an alphabet with d

letters, li = − logd pi. The more frequent objects are then coded by shorter
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words, and the mean length is the entropy. The problem is that li must all be

integers, while − logd pi are generally not. A set of integer li effectively corre-

sponds to another distribution with the probabilities qi = d−li/
∑
i d
−li . Assume

for simplicity that we found encoding with
∑
i d
−li = 1 (unity can be proved to

be an upper bound for the sum). Then li = − logd qi and the mean length is

l̄ =
∑
i pili = −

∑
i pi logd qi = −

∑
i pi(logd pi − logd pi/qi) = S(p) + D(p|q), that

is larger than the optimal value S(p), so that the transmission rate is lower. In

particular, if one takes li = dlogd(1/pi)e, that is the integer part, then one can

show that S(p) ≤ l̄ ≤ S(p) + 1, that is non-optimality is at most one bit.

Connections to Statistical Physics. The second law of thermodyna-
mics is getting trivial from the perspective of mutual information. We have
seen in Section ?? that even when we follow the evolution with infinite pre-
cision, the full N -particle entropy is conserved, but one particle entropy
grows. Now we see that there is no contradiction here: subsequent colli-
sions impose more and more correlation between particles, so that mutual
information growth compensates that of one-particle entropy. Indeed, the
thermodynamic entropy of the gas is the sum of entropies of different par-
ticles

∑
S(pi, qi). In the thermodynamic limit we neglect inter-particle cor-

relations, which are measured by the generalized (multi-particle) mutual in-
formation

∑
i S(pi, qi)−S(p1 . . . pn, q1, . . . qn) = I(p1, q1; . . . ; pn, qn). Deriving

the Boltzmann kinetic equation (??) in Section ??, we replaced two-particle
probability by the product of one-particle probabilities. That gave the H-
theorem, that is the growth of the thermodynamic (uncorrelated) entropy.
Since the Liouville theorem guarantees that the phase volume and the true
entropy S(p1 . . . pn, q1, . . . qn) do not change upon evolution, then the increase
of the uncorrelated part must be compensated by the increase of the mutual
information. In other words, one can replace the usual second law of thermo-
dynamics by the law of conservation of the total entropy (or information): the
increase in the thermodynamic (uncorrelated) entropy is exactly compensa-
ted by the increase in correlations between particles expressed by the mutual
information. The usual second law then results simply from our renunciation
of all correlation knowledge, and not from any intrinsic behavior of dynami-
cal systems. Particular version of such renunciation has been presented in
Section 2.2: the full N -particle entropy grows because of phase-space mixing
and continuous coarse-graining.

Relative entropy allows also to generalize the second law for non-equilibrium
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processes. Entropy itself can either increase upon evolution towards thermal
equilibrium or decrease upon evolution towards a non-equilibrium state, as
seen in Section 2.3. However, the relative entropy between the distribution
and the steady-state distribution monotonously decreases with time. Also,
the conditional entropy between values of any quantity taken at different ti-
mes, S(Xt+τ |Xt), grows with τ when the latter exceeds the correlation time.

4 Applications of Information Theory

My brothers are protons, my sisters are neurons
Gogol Bordello ”Supertheory of Supereverything”

This Chapter puts some content into the general notions introduced
above. Choosing out of enormous variety of applications, I tried to balance
the desire to show beautiful original works and the need to touch diverse sub-
jects to let you recognize the same ideas in different contexts. The Chapter
is concerned with practicality no less than with optimality; we often sacrifice
the latter for the former.

4.1 Distribution from information

So far, we defined entropy and information via the distribution. In practical
applications, however, the distribution is usually unknown and we need to
guess it from some data. The use of information does that. Statistical
physics is a systematic way of guessing, making use of partial information.
How to get the best guess for the probability distribution ρ(x, t), based on
the information given as 〈Rj(x, t)〉 = rj, i.e. as the expectation (mean)
values of some dynamical quantities? Here we also include normalization:
R0 = r0 = 1. Our distribution must contain the whole truth (i.e. all the
given information) and nothing but the truth that is it must maximize the
missing information, which is the entropy S = −〈ln ρ〉. This is to provide
for the widest set of possibilities for future use, compatible with the existing
information. Looking for the extremum of

S +
∑
j

λj〈Rj(x, t)〉 =
∫
ρ(x, t)

{
− ln[ρ(x, t)] +

∑
j

λjRj(x, t)
}
dx ,
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we differentiate it with respect to ρ(x, t) and obtain the equation ln[ρ(x, t)] =
−1 +

∑
j λjRj(x, t) which gives the distribution

ρ(x, t) =
1

Z
exp

[
−1 +

∑
j

λjRj(x, t)
]
. (54)

The normalization factor

Z(λi) = e1−λ0 =
∫

exp
[∑
j=1

λjRj(x, t)
]
dx ,

can be expressed via the measured quantities by using

∂ lnZ

∂λi
= ri . (55)

The distribution (54) corresponds to the entropy extremum, but how we know
that it is the maximum? Positivity of relative entropy proves that. Indeed,
consider any other normalized distribution g which satisfies the constraints:∫
dx gRj(x) = rj. Then∫

dx g ln ρ = −1 +
∑
j

rj =
∫
dx ρ ln ρ = −S(ρ)

so that

S(ρ)− S(g) = −
∫
dx(g ln ρ− g ln g) =

∫
dx g ln(g/ρ) = D(g|ρ) ≥ 0 .

Gibbs distribution is (54) with R1 being energy. When it is the kinetic
energy of molecules, we have Maxwell distribution; when it is potential energy
in an external field, we have Boltzmann distribution. For our initial ”candy-
in-the-box” problem (think of an impurity atom in a lattice if you prefer
physics), let us denote the number of the box with the candy j. Different
attempts give different j but on average after many attempts we find, say,
the mean value 〈j〉 = r1. The distribution giving maximal entropy for a
fixed mean is exponential, which in this case is the geometric distribution:
ρ(j) = (1 − p)pj, where p = r1/(1 + r1) (home exercise). Similarly, if we
scatter on the lattice X-ray with wavenumber k and find 〈cos(kj)〉 = 0.3,
then

ρ(j) = Z−1(λ) exp[−λ cos(kj)]
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Z(λ) =
n∑
j=1

exp[λ cos(kj)] , 〈cos(kj)〉 = d logZ/dλ = 0.3 .

We can explicitly solve this for k � 1� kn when one can approximate the
sum by the integral so that Z(λ) ≈ nI0(λ) where I0 is the modified Bessel
function. Equation I ′0(λ) = 0.3I0(λ) has an approximate solution λ ≈ 0.63.

Note in passing that the set of equations (55) may be self-contradictory or
insufficient so that the data do not allow to define the distribution or allow
it non-uniquely. For example, consider Ri =

∫
xiρ(x) dx for i = 0, 1, 2, 3.

Then (54) cannot be normalized if λ3 6= 0, but having only three constants
λ0, λ1, λ2 one generally cannot satisfy the four conditions. That means that
we cannot reach the entropy maximum, yet one can prove that we can come
arbitrarily close to the entropy of the Gaussian distribution ln[2πe(r2−r2

1)]1/2.
If, however, the extremum is attainable, then (54) defines the information

still missing after the measurements: S{ri} = −∑j ρ(j) ln ρ(j). It is analo-
gous to thermodynamic entropy as a function of (measurable) macroscopic
parameters. It is clear that S have a tendency to decrease whenever we add a
constraint by measuring more quantitiesRi. Making an extra measurementR
one changes the distribution from ρ(x) to (generally non-equilibrium) ρ(x|R),
which has its own conditional entropy

S(x|R) = −
∫
dxdR ρ(R)ρ(x|R) ln ρ(x|R) = −

∫
dxdRρ(x,R) ln ρ(x|R) .

(56)
The conditional entropy quantifies my remaining ignorance about x once I
know R. Measurement decreases the entropy of the system by the mutual
information (40,42) — that how much information about x one gains:

S(x|R)− S(x) = −
∫
ρ(x|R) ln ρ(x|R) dxdR +

∫
ρ(x) ln ρ(x) dx

=
∫
ρ(x,R) ln[ρ(x,R)/ρ(x)ρ(R)] dxdR = S(x,R)− S(R)− S(x) .(57)

But all our measurements happen in a real world at a finite temperature.
Does it matter? Yes, it determines the energy cost of measurements. Assume
that our system is in contact with a thermostat having temperature T , which
by itself does not mean that it is in thermal equilibrium (as, for instance,
a current-carrying conductor). We then can define a free energy F (ρ) =
E−TS(ρ). If the measurement does not change energy (like the knowledge in
which half of the box the particles is), then the entropy decrease (57) increases
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the free energy, so that the minimal work to perform such a measurement is
F (ρ(x|R))−F (ρ(x)) = T [S(x)−S(x|R)]. We shall consider the energy price
of information processing in more detail in Section 4.2.

If we know the given information at some time t1 and want to make
guesses about some other time t2 then our information generally gets less
relevant as the distance |t1 − t2| increases. In the particular case of guessing
the distribution in the phase space, the mechanism of loosing information is
due to separation of trajectories described in Sect. ??. Indeed, if we know
that at t1 the system was in some region of the phase space, the set of
trajectories started at t1 from this region generally fills larger and larger
regions as |t1 − t2| increases. Therefore, missing information (i.e. entropy)
increases with |t1 − t2|. Note that it works both into the future and into the
past. Information approach allows one to see clearly that there is really no
contradiction between the reversibility of equations of motion and the growth
of entropy.

Yet there is one class of quantities where information does not age. They
are integrals of motion. A situation in which only integrals of motion are
known is called equilibrium. The distribution (54) takes the canonical form
(16,17) in equilibrium. On the other hand, taking micro-canonical as constant
over the constant-energy surface corresponds to the same approach of not
adding any additional information to what is known (energy).

From the information point of view, the statement that systems approach
thermal equilibrium is equivalent to saying that all information is forgotten
except the integrals of motion. If, however, we possess the information about
averages of quantities that are not integrals of motion and those averages do
not coincide with their equilibrium values then the distribution (54) deviates
from equilibrium. Examples are currents, velocity or temperature gradients
like considered in kinetics.

Traditional way of thinking is operational: if we leave the system alone,
it is in equilibrium; we need to act on it to deviate it from equilibrium.
Informational interpretation lets us to see it in a new light: If we leave the
system alone, our ignorance about it is maximal and so is the entropy, so
that the system is in thermal equilibrium; when we act on a system in a way
that gives us more knowledge of it, the entropy is lowered, and the system
deviates from equilibrium.

Mention in passing the suggestions to use relative information and mutual
entropy for a more ambitious task of quantifying consciousness, understood
as processing information from different channels in an integrated way, irre-
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ducible to processing information in the channels separately. Such approach
is known as integrated information theory (Tononi 2008).

4.2 Exorcizing Maxwell demon

Demon died when a paper by Szilárd appeared, but it continues
to haunt the castles of physics as a restless and lovable poltergeist.

P Landsberg, quoted from Gleick ”The Information”

Here we want to address the relation between information and energy,
particularly, find out if information has any energy price. Since energy and
entropy (information) have different dimensionalities, we need something to
relate them. For example, this can be temperature, which is the derivative
of the energy with respect to the entropy. That makes it natural to consi-
der a system in contact with a thermostat, but not necessarily in thermal
equilibrium. The Gibbs-Shannon entropy (31) and the mutual information
(??,40,57) can be defined for arbitrary distributions. As we mentioned after
(57), one can then define a free energy for any system in a contact with a
thermostat having temperature T as F (ρ) = E(ρ) − TS(ρ), even when the
distribution of the system itself is not equilibrium. Thermodynamics inter-
prets F as the energy we are free to use keeping the temperature. Information
theory reinterprets that in the following way: If we knew everything, we can
possibly use the whole energy (to do work); the less we know about the sy-
stem, the more is the missing information S and the less work we are able to
extract. In other words, the decrease of F = E − TS with the growth of S
measures how available energy decreases with the loss of information about
the system. Maxwell understood that already in 1878: ”Suppose our senses
sharpened to such a degree that we could trace molecules as we now trace
large bodies, the distinction between work and heat would vanish.”

The concept of entropy as missing information13 (Brillouin 1949) allows
one to understand that Maxwell demon or any other information-processing
device do not really decrease entropy. Indeed, if at the beginning one has an
information on position or velocity of any molecule, then the entropy was less
by this amount from the start; after using and processing the information
the entropy can only increase. Consider, for instance, a particle in the box
at a temperature T . If we know in which half it is, then the entropy (the
logarithm of available states) is ln(V/2). That teaches us that information has

13that entropy is not a property of the system but of our knowledge about the system
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thermodynamic (energetic) value: by placing a piston at the half of the box
and allowing particle to hit and move it we can get the work T∆S = T ln 2
out of thermal energy of the particle:

On the other hand, the law of energy conservation tells that to get such
an information one must make a measurement whose minimum energetic
cost at fixed temperature is Wmeas = T∆S = T ln 2 (that was realized by
Szilard in 1929 who also introduced ”bit” as a unit of information). Such
work needs to be done for any entropy change by a measurement (57). This is
true for an ideal (or demonic) observer, which does not change its state upon
measurements. In a general case, the entropy change is the difference between
the entropy of the system S(A) and the entropy of the system interacting
with the measuring device S(A,M). When there is a change in the free
energy ∆FM of the measuring device, the measurement work is

Wmeas ≥ T∆S + ∆FM = T [S(A)− S(A,M)] + ∆FM . (58)

That guarantees that we cannot break the first law of thermodynamics.
But we just turned thermal energy into work. Can we then break the second
law by constructing a perpetuum mobile of the second kind, regularly measu-
ring particle position and using its thermal energy to do work? Our demonic
engine now includes both the working system A and the measuring device
M. To make a full thermodynamic cycle, we need to return the demon’s me-
mory to the initial state. What is the energy price of erasing information?
Such erasure involves compression of the phase space and is irreversible. For
example, to erase information in which half of the box the particle is, we
may compress the box to move the particle to one half irrespective of where
it was. That compression decreases entropy and is accompanied by the heat
T ln 2 released from the system to the environment. If we want to keep the
temperature of the system, we need to do exactly that amount of work com-
pressing the box (Landauer 1961). In other words, demon cannot get more
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work from using the information S(M) than we must spend on erasing it to
return the system to the initial state (to make a full cycle). More generally,
we can lower the work at the price of cooling the measuring device:

Weras ≥ TS(M)−∆FM . (59)

Together, the energy price of the cycle,

Weras +Wmeas ≥ T [S(A) + S(M)− S(A,M)] = TI , (60)

can be recognized as the temperature times what was defined in the Section 3.5
as the mutual information. Thermodynamic energy cost of measurement and
information erasure depends neither on the information content nor on the
free-energy difference; rather the bound depends only on the mutual correla-
tion between the measured system and the memory. Inequality (60) expres-
ses the trade off between the work required for erasure and that required for
measurement: when one is smaller, the other one must be larger. The rela-
tions (58,59,60) are versions of the second law of thermodynamics, in which
information content and thermodynamic variables are treated on an equal
footing.

Similarly, in the original Maxwell scheme, the demon observes the mole-
cules as they approach the shutter, allowing fast ones to pass from A to B
and slow ones from B to A. Creation of the temperature difference with a
negligible expenditure of work lowers the entropy precisely by the amount of
information that the demon collected. Erasing this information will require
work.

Landauers principle not only exorcizes Maxwells demon, but also imposes
the fundamental physical limit on computations. Performing standard ope-
rations independent of their history requires irreversible acts (which do not
have single-valued inverse). Any Boolean function that maps several input
states onto the same output state, such as AND, NAND, OR and XOR, is
logically irreversible. When a computer does logically irreversible operation
the information is erased and heat must be generated. It is worth stressing
that one cannot make this heat arbitrarily small making the process adiaba-
tically slow: T ln 2 per bit is the minimal amount of dissipation to erase a
bit at a fixed temperature14.

14In principle, any computation can be done using only reversible steps, thus eliminating
the need to do work (Bennett 1973). That will require the computer to reverse all the
steps after printing the answer.
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Take-home lesson: information is physical. Processing information wit-
hout storing an ever-increasing amount of it must be accompanied by a finite
heat release at a finite temperature. Of course, any real device dissipates
heat just because it works at a finite rate. Lowering that rate one lowers the
dissipation rate too. The message is that no matter how slowly we process
information, we cannot make the dissipation rate lower than T ln 2 per bit.
This is in distinction from usual thermodynamic processes where there is
no information processing involved and we can make heat release arbitrarily
small making the process slower.

Experiment. Despite its fundamental importance for information theory
and computer science, the erasure bound has not been verified experimentally
until recently, the main obstacle being the difficulty of doing single-particle
experiments in the low-dissipation regime (dissipation in present-day silicon-
based computers still exceeds the Landauer limit by a factor 102 ÷ 103 but
goes down fast). The experiment realized erasure of a bit by treating colloidal
particle in a double-well potential as a generic model of a one-bit memory
(Berut et al, Nature 2012; Jun, Gavrilov, Bechhoefer, PRL 2014). The initial
entropy of the system is thus ln 2. The procedure is to put the particle into
the right well irrespective of its initial position, see Figure below. It is done
by first lowering the barrier height (Fig. b) and then applying a tilting force
that brings the particle into the right well (Fig ce). Finally, the barrier is
increased to its initial value (Fig f). At the end of this reset operation,
the information initially contained in the memory has been erased and the
entropy is zero.
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The heat/work was determined by experimentally observing the particle
trajectory x(t) and computing the integral of the power using the known
potential U(x, t):

W = Q(τ) = −
∫ τ

0
ẋ(t)

∂U(x, t)

∂x
dt . (61)

This heat was averaged over 600 realizations. According to the second law
of thermodynamics,

〈Q〉 ≥ −T∆S = T ln 2 . (62)

One can see in the right panel of the figure above how the limit is approached
as the duration of the process increases. We shall return to the Brownian
particle in a potential in Section 5.2 where we present a generalization of
(58,59).

4.3 Renormalization group and information loss

Erase the features Chance installed,
and you will see the world’s great beauty15.

A Blok

15Erase the features Chance installed. Watch by chance do not rub a hole. V Nekrasov
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Statistical physics in general is about lack of information. One of the most
fruitful ideas of the 20-th century is to look how one looses information step
by step and what universal features appear in the process. Most often we
loose information about microscopic properties. We can do that by averaging
over small-scale fluctuations in a procedure called coarse-graining. A general
formalism which describes how to make a coarse-graining to keep only most
salient features in the description is called the renormalization group (RG).
It consists in subsequently eliminating degrees of freedom, renormalizing re-
maining ones and looking for fixed points of such a procedure. There is a
dramatic shift of paradigm brought by the renormalization group approach.
Instead of being interested in this or that probability distribution, we are
interested in different RG-flows in the space of distribution. Whole families
(universality classes) of different systems described by different distribution
flow under RG transformation to the same fixed point i.e. have the same
asymptotic behavior.

As almost everything in this course, the simplest realization of RG refers
to summing random numbers, the procedure introduced in the Section 3.1.
The small twist is that now we do summation step by step, summing two
numbers at every step. Consider a set of random iid variables {x1 . . . xN},
each having the probability density ρ(x) with zero mean and unit variance.
The two-step RG reduces the number of random variables by replacing any
two of them by their sum and re-scales the sum to keep the variance: zi =
(x2i−1 + x2i)/

√
2. Since summing doubles the variance we divided by

√
2.

The new random variables each has the following distribution:

ρ′(z) =
√

2
∫
dxdyρ(x)ρ(y)δ(x+ y − z

√
2) . (63)

The distribution which does not change upon such procedure is called fixed
point (even though it is not a point but rather a whole function) and satisfies
the equation

ρ(x) =
√

2
∫
dyρ(y)ρ(

√
2x− y) .

Since this is a convolution equation, the simplest is to solve it by the Fourier
transform, ρ(k) =

∫
ρ(x)eikxdx, which gives

ρ(k
√

2) = ρ2(k) . (64)

We may also say that ρ(k) is the generating function, which is multiplied upon
summation of independent variables. The solution of (64) is ρ0(k) ∼ e−k

2
and
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ρ0(x) = (2π)−1/2e−x
2/2. We thus have shown that the Gaussian distribution

is a fixed point of repetitive summation and re-scaling of random variables.
To turn that into the central limit theorem, we need also to show that

this distribution is linearly stable, that is RG indeed flows towards it. Near
the fixed point, ρ = ρ0(1 + h), the transform can be linearized in h, gi-
ving h′(k) = 2h(k/

√
2). The eigenfunctions of the linearized transform are

hm = km with eigenvalues 21−m/2. There are three conservation laws of the
transformation (63): the moments

∫
xnρ(x) dx must be preserved for n = 0

(normalization), n = 1 (zero mean) and n = 2 (unit variance). The moments
of ρ(x) are derivatives of the generation function ρ(k) at k = 0. Therefore,
the three conservation laws mean that h(0) = h′(0) = h′′(0) = 0, so that only
m > 2 are admissible, which means stability, that is deviations from the fixed
point decrease. To conclude, in the space of distributions with the same vari-
ance, the RG-flow eventually brings us to the distribution with the maximal
entropy, forgetting all the information except the invariants - normalization,
the mean and the variance.

Another natural transformation is replacing a pair by their mean zi =
(x2i−1 + x2i)/2. The fixed point of this distribution satisfies the equation

ρ(z) =
∫
ρ(x)ρ(y)δ(z − x/2− y/2) dxdy ⇒ ρ(k) = ρ2(k/2) .

It has the solution ρ(k) = exp(−|k|) and ρ(x) = (1 + x2)−1, which is the
Cauchy distribution mentioned in Section 3.1. In this case, the distribution
has an infinite variance, and RG preserves only the mean (which is zero) and
normalization. More generally, one can consider zi = (x2i−1 + x2i)/2

µ and
obtain the family of universal distributions, ρ(k) = exp(−|k|µ).

4.4 Flies and spies

What lies at the heart of every living thing is not a fire,
not warm breath, not a ’spark of life.’ It is information.

Richard Dawkins
One may be excused thinking that living beings consume energy to sur-

vive, unless one is a physicist and knows that energy is conserved and can-
not be consumed. All the energy, absorbed by plants from sunlight and by
us from food, is emitted as heat. Life-sustaining substance is entropy: we
consume information and generate entropy by intercepting entropy flows to
high-entropy body heat from low-entropy energy sources — just think how
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much information was processed to squeeze 500 kkal of chemical energy into
100 grams of a chocolate, and you enjoy it even more16.

The evolution as a natural selection is an increasingly efficient encoding of
information about the environment in the gene pool of its inhabitants. This
process is greatly accelerated by sex, which still provides one of the highest
transfer rates of information (even though most of it is discarded).

If an elementary act of life as information processing (say, thought) gene-
rates ∆S, we can now ask about its energy price. Similar to our treatment
of the thermal engine efficiency (1), we assume that one takes Q from the
reservoir with T1 and delivers Q − W to the environment with T2. Then
∆S = S2 − S1 = (Q−W )/T2 −Q/T1 and the energy price is as follows:

Q =
T2∆S +W

1− T2/T1

.

T

T
2

1

QS =Q/T
1

W
W

 − QS =(Q−W)/T
2

1

2

When T1 → T2, the information processing is getting prohibitively ineffective,
just like the thermal engine. In the other limit, T1 � T2, one can neglect
the entropy change on the source, and we have Q = T2∆S +W . Hot Sun is
indeed a low-entropy source.

Let us now estimate our rate of information processing and entropy pro-
duction. A human being dissipates about W = 200 watts of power at
T = 300K. Since the Boltzmann constant is k = 1.38 × 10−23, that gives
about W/kT ' 1023 bits per second. The amount of information processed
per unit of subjective time (per thought) is about the same, assuming that
each moment of consciousness lasts about a second (Dyson, 1979).

We now discuss how such beings actually process information.

Maximizing capacity. Imagine yourself on the day five of Creation desig-
ning the response function for a sensory system of a living being. Technically,
the problem is to choose thresholds for switching to the next level of response,
or equivalently, to choose the function of the input for which we take equi-
distant thresholds. Suppose that we wish to divide the whole perceivable
interval of signals into three regions, encoding them as weak (1,2), medium
(2,3) and strong (3,4):

16Nor we consume matter, only make it more disordered: what we consume has much
lower entropy than what comes out of our excretory system
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For given value intervals of input and response, should we take the solid
line of linear proportionality between response and stimulus? Or choose the
lowest curve that treats all low-intensity inputs as weak and amplifies diffe-
rence in high-intensity signals? The choice depends on the goal. For example,
the upper curve was actually chosen (on the day six) for the auditory system
of animals and humans: our ear senses loudness as the logarithm of the in-
tensity, which amplifies differences in weak sounds and damps strong ones.
That way we better hear whisper of a close one and aren’t that frightened
by loud threats.

If, however, the goal is to maximize the mean information transfer rate
(capacity) at the level of a single neuron/channel, then the response curve
(encoding) must be designed by the Creator together with the probability
distribution of visual stimuli. That it is indeed so was discovered in probably
historically the first application of information theory to the real data in
biology (Laughlin 1981). It was conjectured that maximal-capacity encoding
must use all response levels with the same frequency, which requires that the
response function is an integral of the probability distribution of the input
signals (see Figure). First-order interneurons of the insect eye were found to
code contrast rather than absolute light intensity. Subjecting the fly in the
lab to different contrasts x, the response function y = g(x) was measured
from the fly neurons; the probability density of inputs, ρ(x), was measured
across its natural habitat (woodlands and lakeside) using a detector which
scanned horizontally, like a turning fly.
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The coding strategy for maximizing information capacity by ensuring that all response levels are used with equal 

frequency. Upper left curve: probability density function for stimulus intensities. Lower left curve: the response function, 

which ensures that the interval between each response level encompasses an equal area under the distribution, so that 

each state is used with equal frequency. In the limit where the states are vanishingly small this response function 

corresponds to the cumulative probability function. Right panel: The contrast-response function of fly neuron compared to 
the cumulative probability function for natural contrasts. Simon Laughlin, Naturforsch. 36, 910-912 (1981)

We can now explain it noting that the representation with the maxi-
mal capacity corresponds to the maximum of the mutual information be-
tween input and output: I(x, y) = S(y) − S(y|x). Originally, it was as-
sumed that the transmission is error-free, so that the conditional entropy
S(y|x) is zero, but more realistically, we can assume that it is fixed anato-
mically and does not depend on the input statistics. Therefore, according
to Section 3.5, we need to maximize the entropy of the output assuming
that the input statistics ρ(x) is given. Absent any extra constraints except
normalization, the entropy is maximal when ρ(y) is constant. Indeed, since
ρ(y)dy = ρ(x)dx = ρ(x)dydx/dy = ρ(x)dy/g′(x), then

S(y) = −
∫
ρ(x) ln[ρ(x)/g′(x)] dx = S(x) + 〈ln[g′(x)]〉 , (65)

δS

δg
=

∂

∂x

ρ

g′(x)
= 0 ⇒ g′(x) = Cρ(x) ,

as in the Figure. In other words, we choose equal bins for the variable whose
probability is flat. Since the probability ρ(x) is positive, the response function
y = g(x) is always monotonic i.e. invertible. Note that our choice of response
function is an exact analog of using longer codewords for less frequent letters.
In that way, we utilized only the probability distribution of different signal
levels, similar to language encoding which utilizes different frequencies of
letters (and not, say, their mutual correlations). We have also applied quasi-
static approximation, neglecting dynamics. Let yourself be impressed by the
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agreement of theory and experiment — there were no fitting parameters.
The same approach works well also for biochemical and genetic input-output
relations. For example, the dependence of a gene expression on the level
of a transcription factor is dictated by the statistics of the latter. That
works when the conditional entropy S(y|x) is independent of the form of the
response function y = g(x).

Of course, the eye of any living being provides not a single input signal,
but the whole picture. Let us now pass from a single channel to N inputs and
outputs (neurons/channels). Consider a network with an input vector x =
(x1, . . . , xN) which is transformed into the output vector y(x) monotonically,
that is det[∂yi/∂xk] 6= 0. The multivariate probability density function of y
is as follows:

ρ(y) =
ρ(x)

det[∂yi/∂xk]
, (66)

Making it flat (distribute outputs uniformly) for maximal capacity is not
straightforward now. In one dimension, it is enough to follow the gra-
dient to arrive at an extremum, but there are many possible paths to the
mountain summit. Maximizing the total mutual information between in-
put and output, which requires maximizing the output entropy, is often
(but not always) achieved by minimizing first the mutual information be-
tween the output components. For two outputs we may start by maximi-
zing S(y1, y2) = S(y1) + S(y2) − I(y1, y2), that is minimize I(y1, y2). If we
are lucky and find encoding in terms of independent components, then we
choose for each component the transformation (65), which maximizes its en-
tropy making the respective probability flat. For a good review and specific
applications to visual sensory processing see Atick 1992.

Minimizing correlation between components. Finding least correla-
ted components can be a practical first step in maximizing capacity. Note
how to maximize the mutual information between input and output, we mi-
nimize the mutual information between the components of the output. This
is particularly true for natural signals where most redundancy comes from
strong correlations (like that of the neighboring pixels in visuals). In addition,
finding an encoding in terms of least dependent components is important by
itself for its cognitive advantages. For example, such encoding generally fa-
cilitates pattern recognition. In addition, presenting and storing information
in the form of independent (or minimally dependent) components is impor-
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tant for associative learning done by brains and computers. Indeed, for an
animal or computer to learn a new association between two events, A and B,
the brain should have knowledge of the prior joint probability P (A,B). For
correlated N -dimensional A and B one needs to store N ×N numbers, while
only 2N numbers for quantities uncorrelated (until the association occurs).

Ideally, we wish to find the (generally stochastic) encoding y(x) that
achieves the absolute minimum of the mutual information

∑
i S(yi) − S(y).

One way to do that is to minimize the first term while keeping the second
one, that is under condition of the fixed entropy S(y) = S(x). In general, one
may not be able to find such encoding without any entropy change S(y) −
S(x). In such cases, one defines a functional that grades different codings
according to how well they minimize both the sum of the entropies of the
output components and the entropy change. The simplest energy functional
for statistical independence is then

E =
∑
i

S(yi)− β[S(y)− S(x)] =
∑
i

S(yi)− β ln det[∂yi/∂xk] . (67)

A coding is considered to yield an improved representation if it possesses
a smaller value of E. The choice of the parameter β reflects our priorities
— whether statistical independence or increase in indeterminacy is more
important. Similar minimization procedures will be considered in the next
Section.

Maximizing information transfer and reducing the redundancy between
the units in the output is applied practically in all disciplines that analyze
and process data, from physics and engineering to biology, psychology and
economics. Sometimes it is called infomax principle, the specific technique is
called independent component analysis (ICA). More sophisticated schemes
employs not only mutual information, but also interaction information (??).
Note that the redundancy reduction is usually applied after some procedure
of eliminating noise. Indeed, our gain function provides equal responses
for probable and improbable events, but the latter can be mostly due to
noise, which thus needs to be suppressed. Moreover, if input noises were
uncorrelated, they can get correlated after coding. And more generally, it
is better to keep some redundancy for corrections and checks when dealing
with noisy data.
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4.5 Rate Distortion and Information Bottleneck

When we transfer information, we look for maximal transfer rate and thus
define channel capacity as the maximal mutual information between input
and output. But when we encode the information, we may be looking for the
opposite: what is the minimal number of bits, sufficient to encode the data
with a given accuracy.

For example, description of a real number requires infinite number of
bits. Representation of a continuous input B by a finite discrete rate of
the output encoding generally leads to some distortion, which we shall cha-
racterize by the real function d(A,B). How large is the mean distortion
D =

∑
ij P (Ai, Bj)d(Ai, Bj) for a given encoding with R bits and 2R values?

It depends on the choice of the distortion function, which specifies what
are the most important properties of the signal B. For Gaussian statistics
(which is completely determined by the variance), one chooses the squared
error function d(A,B) = (A − B)2. We first learn to use it in the standard
least squares approximations — now we can understand why — because mi-
nimizing variance minimizes the entropy of a Gaussian distribution and thus
the amount of information needed to characterize it.

Consider a Gaussian B with 〈B〉 = 0 and 〈B2〉 = σ2. If we have one
bit to represent it, apparently, the only information we can convey is the
sign of B. To minimize squared error, we encode positive/negative values by

A = ±σ
√

2/π, which corresponds to

D(1) = (2π)−1/2
∫ ∞

0

(
B − σ

√
2/π

)2
exp[−B2/2σ2]

dB

σ
= σ2/4 .

Let us now turn the tables and ask what is the minimal rate R sufficient to
provide for distortion not exceeding D. This is called rate distortion function
R(D). We know that the rate is the mutual information I(A,B), but now
we are looking not for its maximum (as in channel capacity) but for the
minimum over all the encodings defined by P (B|A), such that the distortion
does not exceed D. Since I(A,B) = S(B)−S(B|A), then minima of I(A,B)
are maxima of S(B|A). It is helpful to think of distortion as produced by the
added noise ξ with the variance D. For a fixed variance, maximal entropy
S(B|A) corresponds to the Gaussian distribution, so that we have a Gaussian
input with 〈B2〉 = σ2 plus (imaginary) Gaussian channel with the variance
〈(B − A)2〉 = D, and the minimal rate is given by (47):

R(D) = I(A,B) = S(B)− S(B|A) = S(B)− S(B − A|A)
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≥ S(B)− S(B − A) = 1
2

log2(2πeσ2)− 1
2

log2(2πeD) = 1
2

log2
σ2

D . (68)

It turns into zero for D = σ2 and goes to infinity for D → 0. Presenting it as
D(R) = σ22−2R, we see that every extra bit of description reduces distortion
by a factor of 4.

One can show that the rate distortion function R(D) is monotonous and
convex for all systems. When the distortion is not a quadratic function, the
conditional probability is not Gaussian. In solving practical problems, it
must be found solving the variational problem, where one finds a normalized
P (B|A), which minimizes the mutual information under the condition of a
given mean distortion. For that one minimizes the functional

F = I + βD =
∑
ij

P (Bj|Ai)P (Ai)

{
ln
P (Bj|Ai)
P (Bj)

+ βd(Ai, Bj)

}
. (69)

After variation with respect to P (Bj|Ai) we obtain

P (Bj|Ai) =
P (Bj)

Z(Ai, β)
e−βd(Ai,Bj) , (70)

where the partition function Z(Ai, β) =
∑
j P (Bj)e

−βd(Ai,Bj) is the normali-
zation factor. Immediate physical analogy is that this is a Gibbs distribution
with the ”energy” equal to the distortion function. Maximizing entropy for
a given energy (Gibbs) is equivalent to minimizing mutual information for a
given distortion function. Choice of the value of the inverse temperature β
reflects our priorities: at small β the conditional probability is close to the
unconditional one, that is we minimize information without much regard to
the distortion. On the contrary, large β requires our conditional probability
to be sharply peaked at the minima of the distortion function.

Similar, but more sophisticated optimization procedures are applied, in
particular, in image processing. Images contain enormous amount of infor-
mation. The rate at which visual data is collected by the photoreceptor
mosaic of animals and humans is known to exceed 106 bits/sec. On the other
hand, studies on the speed of visual perception and reading speeds give num-
bers around 40-50 bits/sec for the perceptual capacity of the visual pathway
in humans. The brain then have to perform huge data compressions. This is
possible because visual information is highly redundant due to strong corre-
lations between pixels. Mutual information is the main tool in the theory of
(image, voice, pattern) recognition and AI.
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The measured quantity A thus contains too much data of low information
value. We wish to compress A to C while keeping as much as possible
information about B. Understanding the given signal A requires more than
just predicting/inferring B, it also requires specifying which features of the
set of possible signals {A} play a role in the prediction. Here meaning seeps
back into the information theory. Indeed, information is not knowledge (and
knowledge is not wisdom). We formalize this problem as that of finding a
short code for {A} that preserves the maximum information about the set
{B}. That is, we squeeze the information that A provides about B through
a ”bottleneck” formed by a limited set of codewords {C}. This is reached
via the method called Information Bottleneck, targeted at characterizing the
tradeoff between information preservation (accuracy of relevant predictions)
and compression. Here one looks for the minimum of the functional

I(C,A)− βI(C,B) . (71)

The coding A → C is also generally stochastic, characterized by P (C|A).
The quality of the coding is determined by the rate, that is by the average
number of bits per message needed to specify an element in the codebook
without confusion. This number per element A of the source space {A} is
bounded from below by the mutual information I(C,A) which we thus want
to minimize. Effective coding utilizes the fact that mutual information is usu-
ally sub-extensive in distinction from entropy which is extensive. Note the
difference from the Section 3.5, where in characterizing the channel capacity
(upper bound for the error-free rate) we maximized I(A,B) over all choices
of the source space {B}, while now we minimize I(C,A) over all choices of
coding. To put it differently, there we wanted to maximize the information
transmitted, now we want to minimize the information processed. This mini-
mization, however, must be restricted by the need to retain in C the relevant
information about B which we denote I(C,B). Having chosen what proper-
ties of B we wish to stay correlated with the encoded signal C, we add the
mutual information I(C,B) with the Lagrange multiplier −β to the functi-
onal (71). The sign is naturally chosen such that β > 0 (analog of inverse
temperature), indeed, we want minimal coding I(A,B) preserving maximal
information I(C,B) (that is I(C,B) is treated similarly to the channel ca-
pacity in the previous section). The single parameter β again represents the
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tradeoff between the complexity of the representation measured by I(C,A),
and the accuracy of this representation, measured by I(C,B). At β = 0 our
quantization is the most sketchy possible — everything is assigned to a single
point. At β grows, we are pushed toward detailed quantization. By varying
β one can explore the tradeoff between the preserved meaningful information
and compression at various resolutions. Comparing with the rate distortion
theory functional (70), we recognize that we are looking for the conditional
probability of the mapping P (C|A), that is we explicitly want to treat some
pixels Ai as more relevant than the others.

However, the constraint on the meaningful information is now nonlinear in
P (C|A), so this is a much harder variational problem. Indeed, (71) can be written
as follows:

I(C,A)− βI(C,B) =
∑
ij

P (Cj |Ai)P (Ai) ln
P (Cj |Ai)
P (Cj)

− β
∑
jk

P (Bk|Cj)P (Cj)

{
ln
P (Bk|Cj)
P (Bk)

}
. (72)

The conditional probabilities of A,B under given C are related by the Bayes’ rule

P (Bk|Cj) =
1

P (Cj)

∑
i

P (Ai)P (Bk|Ai)P (Cj |Ai) , (73)

where the conditional probability of the measurements, P (Bk|Ai), is assumed to be
known. The variation of (72) with respect to the encoding conditional probability,
P (Cj |Ai), now gives the equation (rather than an explicit expression):

P (Cj |Ai) =
P (Cj)

Z(Ai, β)
exp

[
−β

∑
k

P (Bk|Ai) log
P (Bk|Ai)
P (Bk|Cj)

]
, (74)

Technically, the system of equations (73,74) is usually solved by iterations,
for instance, via deep learning (one of the paradigms for unsupervised learning).
Doing compression procedure many times, A → C1 → C2 . . . is used in multi-
layered Deep Learning Algorithms. Here knowledge of statistical physics helps
in several ways, particularly in identifying phase transitions (with respect to β)
and the relation between processing from layer to layer and the renormalization
group: features along the layers become more and more statistically decoupled as
the layers gets closer to the fixed point.

Practical problems of machine learning are closely related to fundamental pro-
blems in understanding and describing the biological evolution. Here an important
task is to identify classes of functions and mechanisms that are provably evolvable
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— can logically evolve into existence over realistic time periods and within rea-
listic populations, without any need for combinatorially unlikely events to occur.
Quantitative theories of evolution in particular aim to quantify the complexity of
the mechanisms that evolved, which is done using information theory.

4.6 Information is money

This section is for those brave souls who decided to leave physics for gambling. If
you have read till this point, you must be well prepared for that.

Let us start from the simplest game: you can bet on a coin, doubling your
bet if you are right or loosing it if you are wrong. Surely, an intelligent person
would not bet money hard saved during graduate studies on a totally random
process with a zero gain. You bet only when you have an information that sides
have unequal probabilities: p > 1/2 and 1 − p. To have a steady income and an
average growth you want to play the game many times. Shall we look then for the
maximal average return? The maximal mean arithmetic growth rate is (2p)N and
corresponds to betting every time all your money on the more probably side. That
mean, however, all comes from a single all-win realization; the probability of that
winning streak goes to zero as pN . To avoid loosing it all with probability fast
approaching unity, you bet only a fraction f of your money on the more probable
p-side. What to do with the remaining money, keep it as an insurance or bet on a
less probable side? The first option just diminishes the effective amount of money
that works. Moreover, the other side also wins sometimes, so we put 1− f on the
side with 1 − p chance. If after N such bets the p-side came n times then your
money is multiplied by the factor (2f)n[2(1− f)]N−n = exp(NΛ), where the rate
is

Λ(f) = ln 2 +
n

N
ln f +

(
1− n

N

)
ln(1− f) . (75)

As N →∞ we approach the mean geometric rate, which is λ = ln 2 + p ln f + (1−
p) ln(1− f). Note the similarity with the Lyapunov exponents from Sections 3.3–
3.5 — we consider the logarithm of the exponentially growing factor since we know
limN→∞(n/N) = p (it is called self-averaging quantity because it is again a sum
of random numbers). Differentiating Λ(f) with respect to f you find that the
maximal growth rate corresponds to f = p (proportional gambling) and equals to

λ(p) = ln 2 + p ln p+ (1− p) ln(1− p) = S(u)− S(p) , (76)

where we denoted the entropy of the uniform distribution S(u) = ln 2. We thus
see that the maximal rate of money growth equals to the entropy decrease, that
is to the information you have (Kelly 1950). What is beautiful here is that the
proof of optimality is constructive and gives us the best betting strategy. An
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important lesson is that we maximize not the averaged return but its logarithm,
which is a geometric mean. The geometric mean is less than the arithmetic mean.
Therefore, we may have a situation when the arithmetic growth rate is larger than
unity while the geometric mean is smaller than unity. That would be a disaster,
since the probability to loose it all will tend to unity as N →∞, even though the
mean returns grows unbounded.

It is straightforward to generalize (76) for gambling on horse races, where many
outcomes have different probabilities pi and payoffs gi. Maximizing

∑
pi ln(figi)

we find fi = pi independent of gi, so that

λ(p, g) =
∑
i

pi ln(pigi) . (77)

Here you have a formidable opponent - the track operator, who actually sets the
payoffs. Knowing the probabilities, an ideal operator can set the payoffs, gi = 1/pi,
to make the game fair and your rate zero. More likely is that the real operator has
business sense to make the racecourse profitable by setting the payoffs a bit lower
to make your λ negative. Your only hope then is that your information is better.
Indeed, if the operator assumes that the probabilities are qi and sets payoffs as
gi = 1/Zqi with Z > 1, then

λ(p, q) = − lnZ +
∑
i

pi ln(pi/qi) = − lnZ +D(p|q) . (78)

That is if you know the true distribution but the operator uses the approximate
one, the relative entropy D(p|q) determines the rate with which your winnings can
grow. Nobody’s perfect so maybe you use the distribution q′, which is not the true
one. In this case, you still have a chance if your distribution is closer to the true
one: λ(p, q, q′) = − lnZ +D(p|q)−D(p|q′). Remind that the entropy determines
the optimal rate of coding. Using incorrect distribution incurs the cost of non-
optimal coding. Amazingly, (78) tells that if you can encode the data describing
the sequence of track winners shorter than the operator, you get paid in proportion
to that shortening.

To feel less smug, note that bacteria follow the same strategy without ever
taking this or other course on statistical physics. Indeed, analogously to coin
flipping, bacteria often face the choice between growing fast but being vulnerable to
antibiotic or grow slow but being resistant. They then use proportional gambling
to allocate respective fractions of populations to different choices. There could
be several lifestyle choices, which is analogous to horse racing problem (called
phenotype switching in this case). The same strategy is used by many plants,
where the fraction of the seeds do not germinate in the same year they were
dispersed; the fraction increases together with the environment variability.
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Bacteria, plants and gamblers face the problem we haven’t mentioned yet:
acquiring information, needed for proportional gambling, has its own cost. One
then looks for a tradeoff between maximizing growth and minimizing information
cost. Assume that the environment is characterized by the parameter A, say, the
concentration of a nutrient. The internal state of the bacteria is characterized by
another parameterB, which can be the amount of enzyme needed to metabolize the
nutrient. The growth rate is then the function of these two parameters r(A,B). We
are looking for the conditional probability P (B|A), which determines the mutual
information between the external world and the internal state:

I(A,B) =

∫
dAP (A)

∫
dBP (B|A) log2

P (B|A)

P (B)
. (79)

To decrease the cost aI of acquiring this information, we wish to let P (B|A) closer
to P (B). Yet we also wish to maintain the average growth rate

λ =

∫
dAP (A)

∫
dB P (B|A)r(A,B) . (80)

Therefore, we look for the maximum of the functional F = λ − aI, which gives
similarly to (69,70)

P (B|A) =
P (B)

Z(A, β)
eβr(A,B) , (81)

where β = a−1 ln 2 and the partition function Z(A, β) =
∫
dBP (B)eβr(A,B) is

the normalization factor. We now recognize the rate distortion theory from the
previous subsection; the only difference is that the energy now is minus the growth
rate. The choice of β reflects relative costs of the information and the metabolism.
If information is hard to get, one chooses small β, which makes P (B|A) weakly
dependent of r(A,B) and close to unconditional probability. If information is
cheaper, (81) tells us that we need to peak our conditional probability around the
maxima of the growth rate. All the possible states in the plane r, I are below some
monotonic convex curve, much like in the energy-entropy plane in Section 1.1. One
can reach optimal (Gibbs) state on the boundary either by increasing the growth
rate at a fixed information of by decreasing the information at a fixed growth rate.

Economic activity of humans is not completely reducible to gambling and its
essence understood much less. When you earn enough money, it may be a good
time to start thinking about the nature of money itself. Money appeared first
as a measure of value, it acquired probabilistic aspect with the development of
credit. These days, when most of it is in bits, it is clear that this is not matter
(coins, banknotes) but information. Moreover, the total amount of money grows
on average, but could experience sudden drops when the crisis arrives. Yet in
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payments money behaves as energy, satisfying the conservation law. I have a
feeling that we need a new concept for describing money, which has properties
of both entropy and energy. Free energy (which combines energy and entropy
additively) probably cannot play this role, since the money as a universal medium
of exchange is essentially a social construct. For example, cash payments are
guaranteed by governments, but credit card payments are guaranteed usually by
private banks, so these two kinds of money are not identical. Add to this non-bank
money like cryptocurrencies and we start to understand that the value of money
depends essentially on how many people agree to use it. It is a challenge to devise a
conceptual framework able to handle both material and ephemeral sides of money,
but it seems that the information theory is a right place to start.

5 Stochastic processes

In this Section we present modern generalizations of the second law and fluctuation-
dissipation relations. This is best done using the fundamental process of a random
walk in different environments. It is interesting both for fundamentals of science
and for numerous modern applications related to fluctuations in nano-particles,
macro-molecules, stock market prices etc.

5.1 Random walk and diffusion

Consider a particle that can hop randomly to a neighboring cite of d-dimensional
cubic lattice, starting from the origin at t = 0. We denote a the lattice spacing, τ
the time between hops and ei the orthogonal lattice vectors that satisfy ei · ej =
a2δij . The probability to be in a given cite x satisfies the equation

P (x, t+ τ) =
1

2d

d∑
i=1

[P (x + ei, t) + P (x− ei, t)] . (82)

We can write is as a finite difference approximation

P (x, t+ τ)− P (x, t) =
1

2d

d∑
i=1

[P (x + ei, t) + P (x− ei, t)− 2P (x, t)] . (83)

The diffusion equation appears in the continuum limit taken while keeping constant
the ratio κ = a2/2dτ :This

(∂t − κ∆)P (x, t) = 0 . (84)
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Its solution is as follows:

ρ(x, t) = P (x, t)a−d ≈ (2π)−d
∫
eikx−tκk

2
ddk = (4πκt)−d/2exp

(
− x2

4κt

)
. (85)

Note that (85,84) are isotropic and translation invariant while the discrete ver-
sion respected only cubic symmetries. Also, the diffusion equation conserves the
total probability,

∫
ρ(x, t) dx, because it has the form of a continuity equation,

∂tρ(x, t) = −div j with the current j = −κ∇ρ.
Consider now a Brownian particle under the action of a random force f and in

an external field V (q). The momentum and coordinate satisfy the equations

ṗ = −λp + f − ∂qV , q̇ = p/M . (86)

Note that these equations characterize the system with the Hamiltonian H =
p2/2M + V (q), that interact with the thermostat, which provides friction −λp
and agitation f - the balance between these two terms 2λTM =

∫
〈fi(0)fi(t)〉dt

means that the thermostat is in equilibrium.
Consider the over-damped limit λ2M � ∂2

qqV , where we can neglect the acce-
leration term on timescales exceeding the force correlation time τ : λp � ṗ. For
example, if we apply to a charged particle an electric field E = −∂qV constant
in space, then ∂2

qqV = 0; averaging (coarse-graining) over times exceeding τ , we
can neglect acceleration, since the particle move on average with a constant velo-
city E/λM . In this limit our second-order equation (86) on q is reduced to the
first-order equation:

λp = λM q̇ = f − ∂qV . (87)

We can now derive the equation on the probability distribution ρ(q, t), which
changes with time due to random noise and evolution in the potential, the two
mechanisms can be considered additively. We know that without V ,

q(t)− q(0) = (λM)−1
∫ t

0
f(t′)dt′ , 〈|q(t)− q(0)|2〉 = 2κt ,

and the density ρ(q, t) satisfies the diffusion equation. The dynamical equation
without any randomness, λM q̇ = −∂qV , corresponds to a flow in q-space with the
velocity w = −∂qV/λM . In that flow, density satisfies the continuity equation
∂tρ = −div ρw = −∂qiwiρ. Together, diffusion and advection give the so-called
Fokker-Planck equation

∂ρ

∂t
= κ∇2ρ+

1

λM

∂

∂qi
ρ
∂V

∂qi
= −div J . (88)
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The Fokker-Planck equation has a stationary solution which corresponds to
the particle in an external field and in thermal equilibrium with the surrounding
molecules:

ρ(q) ∝ exp[−V (q)/λMκ] = exp[−V (q)/T ] . (89)

Apparently it has a Boltzmann-Gibbs form, and it turns into zero the probability
current: J = −ρ∂V/∂q − κ∂ρ/∂q = e−V/T∂(ρeV/T )/∂q = 0. We shall use the
Fokker-Planck equation in the next section for the consideration of the detailed
balance and fluctuation-dissipation relations.

5.2 General fluctuation-dissipation relation

Fluctuation-dissipation theorem and Onsager reciprocity relations treated small
deviations from equilibrium. Recently, a significant generalization of equilibrium
statistical physics appeared for systems with one or few degrees of freedom devi-
ated arbitrary far from equilibrium. This is under the assumption that the rest
of the degrees of freedom is in equilibrium and can be represented by a ther-
mostat generating thermal noise. This new approach also allows one to treat
non-thermodynamic fluctuations, like the negative entropy change.

Consider again the over-damped Brownian particle with the coordinate x(t) in
a time-dependent potential V (x, t):

ẋ = −∂xV + η . (90)

Here the random function η(t) can be thought of as representing interaction with
a thermostat with the temperature T so that 〈η(0)η(t)〉 = 2Tδ(t). This equation
(used very often in different applications) can be applied to any macroscopic ob-
servable, where one can distinguish a systematic and random part of the evolution.

The Fokker-Planck equation for the probability ρ(x, t) has the form (88):

∂tρ = T∂2
xρ+ ∂x(ρ∂xV ) = −ĤFPρ . (91)

We have introduced the Fokker-Planck operator,

HFP = − ∂

∂x

(
∂V

∂x
+ T

∂

∂x

)
,

which allows one to exploit another instance of the analogy between quantum
mechanics and statistical physics. We may say that the probability density is
the ψ-function is the x-representation, ρ(x, t) = 〈x|ψ(t)〉. In other words, we
consider evolution in the Hilbert space of functions so that we may rewrite (91) in
a Schrödinger representation as d|ψ〉/dt = −ĤFP |ψ〉, which has a formal solution
|ψ(t)〉 = exp(−tHFP )|ψ(0)〉. The only difference with quantum mechanics is that
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their time is imaginary (of course, they think that our time is imaginary). The
transition probability is given by the matrix element:

ρ(x′, t′;x, t) = 〈x′| exp[(t− t′)HFP )|x〉 . (92)

Without the coordinate-dependent field V (x), the transition probability is sym-
metric, ρ(x′, t;x, 0) = ρ(x, t;x′, 0), which is formally manifested by the fact that
the respective Fokker-Planck operator ∂2

x is Hermitian. This property is called the
detailed balance.

How the detailed balance is modified in an external field? If the potential V
is time independent, then we have a Gibbs steady state ρ(x) = Z−1

0 exp[−βV (x)],
where Z0 =

∫
exp[−βV (x, 0)] dx. That state satisfies a modified detailed balance:

the probability current is the (Gibbs) probability density at the starting point
times the transition probability; forward and backward currents must be equal in
equilibrium:

ρ(x′, t;x, 0)e−V (x)/T = ρ(x, t;x′, 0)e−V (x′)/T . (93)

〈x′|e−tHFP−V/T |x〉 = 〈x|e−tHFP−V/T |x′〉 = 〈x′|e−V/T−tH
†
FP |x〉 .

Since this must be true for any x, x′ then e−tH
†
FP = eV/T e−tHFP e−V/T and

H†FP ≡
(
∂V

∂x
− T ∂

∂x

)
∂

∂x
= eV/THFP e

−V/T , (94)

i.e. eV/2THFP e
−V/2T is hermitian, which can be checked directly. The quantum-

mechanical notations thus allowed us to translate the detailed balance from the
property of transition probabilities to that of the evolution operator.

If we now allow the potential to change in time then the system goes away
from equilibrium. Consider an ensemble of trajectories starting from the initial
positions taken with the equilibrium Gibbs distribution corresponding to the initial
potential: ρ(x, 0) = Z−1

0 exp[−βV (x, 0)]. As time proceeds and the potential
continuously changes, the system is never in equilibrium, so that ρ(x, t) does not
generally have a Gibbs form. Indeed, even though one can define a time-dependent
Gibbs state Z−1

t exp[−βV (x, t)] with Zt =
∫

exp[−βV (x, t)]dx, one can directly
check that it is not any longer a solution of the Fokker-Planck equation (91) because
of the extra term: ∂tρ = −βρ∂tV . The distribution needs some time to adjust
to the potential changes and is generally dependent on the history of these. For
example, if we suddenly broaden the potential well, it will take diffusion (with
diffusivity T ) to broaden the distribution. Still, can we find some use of the Gibbs
factor and also have anything generalizing the detailed balance relation (93) we had
in equilibrium? Such relation was found surprisingly recently despite its generality
and relative technical simplicity of derivation.
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To find the quantity that has a Gibbs form (i.e. have its probability determined
by the instantaneous partition function Zt), we need to find an equation which
generalizes (91) by having an extra term that will cancel the time derivative of the
potential. It is achieved by considering, apart from a position x, another random
quantity defined as the potential energy change (or the external work done) during
the time t:

Wt =

∫ t

0
dt′
∂V (x(t′), t′)

∂t′
. (95)

The time derivative is partial i.e. taken only with respect to the second argu-
ment. The work is a fluctuating quantity depending on the trajectory x(t′), which
depends on the initial point and noise.

Let us now take many different realizations of the noise η(t), choose initial x(0)
with the Gibbs probability ρ0 and run (90) many times with every initial data and
every noise realization. It will give us many trajectories having different endpoints
x(t) and different energy changes W accumulated along the way. Now consider
the joint probability ρ(x,W, t) to come to x acquiring energy change W . This
two-dimensional probability distribution satisfies the generalized Fokker-Planck
equation, which can be derived as follows: Similar to the argument preceding
(88), we note that the flow along W in x −W space proceeds with the velocity
dW/dt = ∂tV so that the respective component of the current is ρ∂tV and the
equation takes the form

∂tρ = β−1∂2
xρ+ ∂x(ρ∂xV )− ∂W ρ∂tV , (96)

Since W0 = 0 then the initial condition for (96) is

ρ(x,W, 0) = Z−1
0 exp[−βV (x, 0)]δ(W ) . (97)

While we cannot find ρ(x,W, t) for arbitrary V (t) we can multiply (96) by exp(−βW )
and integrate over dW . Since V (x, t) does not depend on W , we get the closed
equation for f(x, t) =

∫
dWρ(x,W, t) exp(−βW ):

∂tf = β−1∂2
xf + ∂x(f∂xV )− βf∂tV , (98)

Now, this equation does have an exact time-dependent solution

f(x, t) = Z−1
0 exp[−βV (x, t)] ,

where the factor Z−1
0 is chosen to satisfy the initial condition (97). Note that

f(x, t) is instantaneously defined by V (x, t), no history dependence as we have
generally in ρ(x, t). In other words, the distribution weighted by exp(−βWt) looks
like Gibbs state, adjusted to the time-dependent potential at every moment of
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time. Remark that the phase volume defines probability only in equilibrium, yet
the work divided by temperature is an analog of the entropy change (production),
and the exponent of it is an analog of the phase volume change. Let us stress
that f(x, t) is not a probability distribution. In particular, its integral over x is
not unity but the mean phase volume change, which remarkably is expressed via
equilibrium partition functions at the ends (Jarzynski 1997):∫

f(x, t)dx =

∫
ρ(x,W, t)e−βWdxdW =

〈
e−βW

〉
=
Zt
Z0

=

∫
e−βV (x,t)dx∫
e−βV (x,0)dx

. (99)

Here the bracket means double averaging, over the initial distribution ρ(x, 0) and
over the different realizations of the Gaussian noise η(t) during the time interval
(0, t). We can also obtain all weighted moments of x like 〈xn exp(−βWt)〉 17. One
can introduce the free energy Ft = −T lnZt, so that Zt/Z0 = exp[β(F0 − Ft)].

Let us reflect. We started from a Gibbs distribution but considered arbitrary
temporal evolution of the potential. Therefore, our distribution was arbitrarily
far from equilibrium during the evolution. And yet, to obtain the mean exponent
of the work done, it is enough to know the partition functions of the equilibrium
Gibbs distributions corresponding to the potential at the beginning and at the end
(even though the system is not in equilibrium at the end). This is, of course, be-
cause the further relaxation to the equilibrium at the end value of the potential is
not accompanied by doing any work. Remarkable that there is no dependence on
the intermediate times. One can also look at it from the opposite perspective: no
less remarkable is that one can determine the truly equilibrium property, the free
energy difference, from non-equilibrium measurements (which could be arbitrary
fast rather than adiabatically slow as we used to do in traditional thermodyna-
mics).

We can write for the dissipation Wd = W − Ft + F0 (the work minus the free
energy change) the following identity:

〈e−βWd〉 =

∫
dWdρ(Wd) exp(−βWd) = 1 , (100)

which is a generalization of the second law of thermodynamics. Indeed, the mean
dissipation divided by temperature is the thermodynamic entropy change. Using
the Jensen inequality 〈eA〉 ≥ e〈A〉, one can obtain the usual second law of thermo-
dynamics in the following form:

〈βWd〉 = 〈∆S〉 ≥ 0 .

17I thank R. Chetrite for this derivation.
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Moreover, the Jarzynski relation is a generalization of the fluctuation-dissipation
theorem, which can be derived from it for small deviations from equilibrium. Na-
mely, we can consider V (x, t) = V0(x) − f(t)x, consider limit of f → 0, expand
(99) up to the second-order terms in f and express the response to the field as the
time derivative of the second moment.

When information processing is involved, it must be treated on equal footing,
which allows one to decrease the work and the dissipation below the free energy
difference:

〈e−βWd−I〉 = 〈e−∆S〉 = 1 . (101)

(Sagawa and Uedo, 2012; Sagawa 2012). We have considered such a case in
Section 4.2, where we denoted Wd = Q and used 〈Wd〉 ≥ −IT = −T∆S. The
exponential equality (101) is a generalization of this inequality and (60).

So the modern form of the second law of thermodynamics is an equality rather
than an inequality. The latter is just a partial consequence of the former. Compare
it with the re-formulation of the second law in Section 3.3 as a conservation law
rather than a law of increase. And yet (101) is not the most general form. The
further generalization is achieved by relating the entropy production to irreversibi-
lity, stating that the probability to have a change −∆S in a time-reversed process
is as follows (Crooks 1999):

ρ†(−∆S) = ρ(∆S)e−∆S . (102)

Integrating (102) one obtains (99,100,101). That remarkable relation allows also
one to express the mean entropy production via the relative entropy (53) between
probabilities of the forward and backward evolution:

〈∆S〉 =
〈

ln[ρ(∆S)/ρ†(−∆S)]
〉
. (103)

Entropy fluctuations were unobservable in classical macroscopic thermodyna-
mics, but they are often very important in modern applications to nano and bio
objects.

The validity condition for the results in this Section is that the interaction
with the thermostat is represented by noise independent of the the evolution of
the degrees of freedom under consideration.

5.3 Stochastic Web surfing and Google’s PageRank

When it was proclaimed that the Library contained all books, the first
impression was one of extravagant happiness... As was natural, this was

followed by an excessive depression. The certitude that some ... precious
books were inaccessible seemed almost intolerable.
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J L Borges ”The Library of Babel”
Approaching the conclusion of the course, we cannot any more avoid the que-

stion: can we find an objective and quantitative measure not only of the amount
of information, but also of its importance? We need to know which are the most
precious books in the Library. By this time, it should come as no surprise for the
reader that such measures can also be found using the statistical approach.

For an efficient information retrieval from the Web Library, webpages need
to be ranked by their importance to order search results. A reasonable way to
measure the importance of a page is to count the number of links that refer to it.
Not all links are equal though — those from a more important page must bring
more importance. On the other hand, a link from a page with many links must
bring less importance (here probability starts creeping in). One then comes to
the two rules: i) every page relays its importance score to the pages it links to,
dividing it equally between them, ii) the importance score of a page is the sum of
all scores obtained by links. For Internet with n pages, we organize all their scores
into a vector p = {p1, . . . , pn} which we normalize:

∑n
i=1 pi = 1. According to the

above rules, pi =
∑
j pj/nj where nj is the number of outgoing links on page j,

which links to the page i. In other words, we are looking for the eigenvector of
the hyperlink matrix, pÂ = p, where the matrix elements aij = 1/nj if j links to
i and aij = 0 otherwise. Does a unique eigenvector with all non-negative entries
and a unit eigenvalue always exist? If yes, how to find it?

The iterative algorithm to find the score eigenvector is called PageRank18 (Brin
and Page 1998). The algorithm equates the score pi of a page with the probabi-
lity that a person randomly clicking on links will arrive at this page. It starts
from ascribing equal probability to all pages, pi(0) = 1/n, and generates the new
probability distribution by applying the above rules of the score relay:

p(t+ 1) = p(t)Â . (104)

We recognize that this stochastic process is a Markov chain, which means that the
future is determined by the present state and the transition probability, but not
by the past. We thus interpret Â as the matrix of transition probabilities between
pages for our stochastic surfer. In later modifications, one fills the elements of Â
not uniformly as 1/nj but use information about actual frequencies of linking that
can be obtained from access logs. Could our self-referential rules lead to a vicious
circle or the iterations converge at t→∞? It better be convergent fast to be of any
use for the instant-gratification generation. It is clear that if the largest eigenvalue
λ1 of Â was larger than unity, than the iterations would diverge; if λ1 < 1, then

18”Page” relates both to webpage and to Larry Page, who with Sergei Brin invented the
algorithm and created Google.
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the iterations would converge to zero. We need the largest eigenvalue to be unity
and correspond to a single eigenvector, so that the iterations converge. How fast
it converges then will be determined by the second largest eigenvalue λ2 (which
must be less than unity).

Moment reflection is enough to see the problem: some pages do not link to
any other page, which corresponds to rows of zeroes in Â. Such pages accumulate
the score without sharing it. Another problem is caused by loops. The figure
illustrates both problems:

If all transition probabilities are nonzero, the probability vector with time tends
to (0, 0, 1), that is the surfer is stuck at the page 3. When the probabilities a13, a23

are very small, the surfer tend to be caught for long times in the loop 1←→ 2.
To release our random surfer from being stuck at a sink or caught in a loop,

the original PageRank algorithm allowed it to jump randomly to any other page
with equal probability. To be fair with pages that are not sinks, these random
teleportations are added to all nodes in the Web: surfer either clicks on a link on
the current page with probability d or opens up a random page with probability
1 − d. To quote the original: ”We assume there is a ”random surfer” who is
given a web page at random and keeps clicking on links, never hitting ”back” but
eventually gets bored and starts on another random page. The probability that
the random surfer visits a page is its PageRank. And, the damping factor is the
probability at each page the ”random surfer” will get bored and request another
random page.” This is equivalent to replacing Â by Ĝ = dÂ + (1 − d)Ê. Here
the teleportation matrix Ê has all entries 1/n, that is Ê = eeT /n, where e is the
column vector with ei = 1 for i = 1, . . . , n. After that, all matrix entries aij are
strictly positive and the graph is fully connected.

It is important that now our matrix has positive elements in every column
whose sum is unity. Such matrices are called stochastic, since every column can
be thought of as a probability distribution. Every stochastic matrix has unity
as the largest eigenvalue. Indeed, since

∑
j aij = 1, then e is an eigenvector of

the transposed matrix: ÂTe = e. Therefore, 1 is an eigenvalue for ÂT , and also
for Â, which has the same eigenvalues. We can now use convexity to prove that
this is the largest eigenvalue. For any vector p, every element of pÂ is a convex
combination of the elements,

∑
j pjaij , which cannot exceed the largest element

of p since
∑
j aij = 1. For an eigenvector with an eigenvalue exceeding unity,

at least one element of pÂ must exceed the largest element of p, therefore such
eigenvector cannot exist. This is a particular case of the theorem: The eigenvalue
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with the largest absolute value of a positive square matrix is positive, and belongs
to a positive eigenvector, where all of the vector’s elements are positive. All other
eigenvectors are smaller in absolute value (Markov 1906, Perron 1907).

The great achievement of PageRank algorithm is the replacement of the itera-
tive process (104) by

p(t+ 1) = Ĝp(t) . (105)

That process cannot be caught into a loop and converges, which follows from the
fact that Gii 6= 0 for all i; that is there is always a probability to stay on the page
breaking any loop. The eigenvalues of Ĝ are 1, dλ2 . . . dλn (prove it), so the choice
of d affects convergence, the smaller the faster. On the other hand, it is somewhat
artificial to use teleportation to an arbitrary page, so larger values of d give more
weight to the true link structure of the Web. As in other optimization problems
we encountered in this course, one needs a workable compromise. The standard
Google choice d = 0.85 comes from estimating how often an average surfer uses
bookmarks. As a result, the process usually converges after about 50 iterations.

One can design a personalized ranking by replacing the teleportation matrix
by Ê = evT , where the probability vector v has all nonzero entries and allows for
personalization, that is can be chosen according to the individual user’s history of
searches and visits. That means that it is possible in principle to have our personal
rankings of the webpages and make searches custom-made.

As mentioned, the sequence of the probability vectors defined by the relations
of the type (104,105) is a Markov chain. In particular, the three random quantities
X → Y → Z is a Markov triplet if Y is completely determined by X,Z, while
X,Z are independent conditional on Y , that is I(X,Z|Y ) = 0. Such chains have
an extremely wide domain of applications.

6 Conclusion

This Chapter attempts to compress the book to its most essential elements.

6.1 Take-home lessons

1. Thermodynamics studies restrictions imposed by hidden on observable.
It deals with two fundamental extensive quantities. The first one (energy) E
is conserved for a closed system, and its changes are divided into work (due to
observable degrees of freedom) and heat (due to hidden ones). The second quantity
(entropy) S can only increase for a closed system and reaches its maximum in
thermal equilibrium, where the system entropy is a convex function of the energy.
All available states lies below this convex curve in S − E plane.
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2. Convexity of the dependence E(S) allows us to introduce temperature
as the derivative of the energy with respect to the entropy. Extremum of the
entropy means that the temperatures of the connected subsystems are equal in
equilibrium. The same is true for the energy derivatives with respect to volume
and other extensive variables. The entropy increase (called the second law of
thermodynamics) imposes restrictions on thermal engine efficiency, that is the
fraction of heat used for work:

W

Q1
=
Q1 −Q2

Q1
= 1− T2∆S2

T1∆S1
≤ 1− T2

T1
.

T

Q
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T
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Similarly, if information processing generates ∆S, its energy price is as follows:
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3. Need in statistics appear due to incomplete knowledge: We can measure only
part of the degrees of freedom; even if we measure them all, we do it with a finite
precision. Statistical physics defines the (Boltzmann) entropy of a closed system as
the log of the phase volume, S = log Γ and assumes (for the lack of any knowledge)
the uniform distribution w = 1/Γ called microcanonical. For a subsystem, the
(Gibbs) entropy is defined as the mean phase volume: S = −

∑
iwi logwi; the

probability distribution is then obtained requiring maximal entropy for a given
mean energy: logwi ∝ −Ei. Information theory generalizes this approach, see 13
below.

4. Irreversibility of the entropy growth seems to contradict Hamiltonian dyna-
mics, which is time-reversible and preserves the N -particle phase-space probability
density. However, one can obtain the equation on a one-particle density for a dilute
gas. If we then assume that before every collision the particles were independent,
then we obtain the Boltzmann kinetic equation, which, in particular, describes the
irreversible growth of the one-particle entropy. Since the total entropy is concer-
ned, while the sum of one-particle entropies grow, we conclude that their difference
must grow too. Later, we call it the mutual information. The lesson is that if we
follow precisely all the degrees of freedom, the entropy is conserved and no infor-
mation is lost. But if we follow only part of them, the entropy of that part will
generally grow — whatever information we had is getting less relevant with time.

5. The total entropy growth can appear even if we follow all the degrees of
freedom, but do it with a finite precision. In this case, we essentially consider evo-
lution of finite phase-space regions. Instability leads to separation of trajectories,
which spread over the whole phase space under a generic reversible Hamiltonian
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dynamics, very much like flows of an incompressible liquid are mixing (we may
say metaphorically, that for unstable systems, any extra digit in precision adds a
new degree of freedom). Spreading and mixing in phase space correspond to the
approach to equilibrium and entropy growth. On the contrary, to deviate a system
from equilibrium, one adds external forcing and dissipation, which makes its phase
flow compressible and distribution non-uniform.

6. Basic mathematical object we use in our discrete thinking is the sum of
independent random numbers X =

∑N
i=1 yi. Three concentric statements were

made. The weakest one is that X approaches its mean value X̄ = N〈y〉 exponen-
tially fast in N . The next statement is that the distribution P(X) is Gaussian in
the vicinity N−1/2 of the maximum. For even larger deviations, the distribution
is very sharp: P(X) ∝ e−NH(X/N) where H ≥ 0 and H(〈y〉) = 0. Applying this
to the log of the probability of a given sequence, limN→∞ p(y1 . . . yN ) = −NS(Y ),
we learn two lessons: i) the probability is independent of a sequence for most of
them (almost all events are almost equally probable), ii) the number of typical
sequences grows exponentially and the entropy is the rate.

7. Another simple mathematical property we use throughout is convexity.
We first use it in the thermodynamics to make sure that the extremum is on
the boundary of the region and to make Legendre transform of thermodynamic
potentials. We then use convexity of the exponential function to show that even
when the mean of a random quantity is zero, its mean exponent is positive. That
provides for an exponential separation of trajectories in an incompressible flow and
exponential growth of the density of an element in a compressible flow.

8. Since uncertainty or the lack of knowledge plays such a prominent role,
we wish to quantify it. The measure of uncertainly is the amount of information
needed to remove it. This is consistently done in a discrete case, for instance,
by counting the number of bits, that is answers to ”yes-no” questions. That
way we realize that the information is log2 of the number of equally probable
possibilities (Boltzmann entropy) or the mean logarithm if the probabilities are
different (Shannon-Gibbs entropy). Here convexity of the function −w logw helps
us to prove that the information/entropy has its maximum for equal probabilities
(when our ignorance is maximal).

9. The point 6 above states that the number of typical sequences grows with
the rate equal to the entropy S. The number of typical binary sequences of length
N is then 2NS , which is smaller than 2N . The efficient encoding of the typical
sequences thus involves words with lengths from unity to NS, which is less than
N if the probabilities of 0 and 1 are not equal. That means that the entropy is
both the mean and the fastest rate of the reception of information brought by
long messages/measurements. To squeeze out all the unnecessary bits, encoding
is used both in industry and in nature where sources often bring highly redundant
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information, like in visual signals.
10. If the transmission channel B → A makes errors, then the message does

not completely eliminate uncertainty; what remains is the conditional entropy
S(B|A) = S(A,B) − S(A), which is the mean rate of growth of the number of
possible errors. Sending extra bits to correct these errors lowers the transmission
rate from S(B) to the mutual information I(A,B) = S(B) − S(B|A), which is
the mean difference of the uncertainties before and after the message. The great
news is that one can still achieve an asymptotically error-free transmission if the
transmission rate is lower than I. The maximum of I over all source statistics
is the channel capacity, which is the maximal rate of asymptotically error-free
transmission. In particular, to maximize the capacity of sensory processing, the
response function of a living beings or a robot must be a cumulative probability
of stimuli.

11. Very often our goal is not to transmit as much information as possible,
but to compress it and process as little as possible, looking for an encoding with
a minimum of the mutual information. For example, the rate distortion theory
looks for the minimal rate I of information transfer under the restriction that the
signal distortion does not exceed the threshold D. This is done by minimizing the
functional I+βD. Another minimization task could be to separate the signal into
independent components with as little as possible (ideally zero) mutual information
between them.

12. The conditional probability allows for hypothesis testing by the Bayes’ rule:
P (h|e) = P (h)P (e|h)/P (e). That is the probability P (h|e) that the hypothesis is
correct after we receive the data e is the prior probability P (h) times the support
P (e|h)/P (e) that e provide for h. Taking a log and averaging we obtain familiar
S(h|e) = S(h) − I(e, h). If our hypothesis concerns the probability distribution
itself, then the difference between the true distribution p and the hypothetical
distribution q is measured by the relative entropy D(p|q) = 〈log2(p/q)〉. This is yet
another rate — with which the error probability grows with the number of trials. D
also measures the decrease of the transmission rate due to non-optimal encoding:
the mean length of the codeword is not S(p) but bounded by S(p) + D(p|q).
Mutual information is a particular case of relative entropy, they are both invariant
with respect to arbitrary transformations of variables in a continuous case, which
facilitates their ever-widening area of applications.

13. Since so much hangs on getting the right distribution, how best to guess it
from the data? This is achieved by maximizing the entropy under the given data
— ”the truth and nothing but the truth”. That explains and makes universal the
approach from the point 3. It also sheds new light on physics, telling us that on
some basic level all states are constrained equilibria.

14. Information is physical: to learn ∆S = S(A)−S(A,M) one does the work
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T∆S, where A is the system and M is the measuring device. To erase information,
one needs to convert TS(M) into heat. Both acts require a finite temperature. The
energetic price of a cycle is T times the mutual information: TI(A,M). Another
side of the physical nature of information is that there is the (Bekenstein) limit on
how much entropy one can squeeze inside a given a radius; surprisingly, the limit
is proportional to the area rather than the volume and is realized by black holes
— our gates outside of this world.

15. The Renormalization Group is a best so far known way to forget infor-
mation. Apart from forgetting in the first step, it involves the second step of
renormalization. The focus is on the change of the probability distribution and
the appearance of an asymptotic distribution after many steps. We find that the
entropy of the partially averaged and renormalized distribution is the proper me-
asure of forgetting in simple cases, like adding random numbers on the way to
the central limit theorem. In physical systems with many degrees of freedom, it
can be the mutual information defined in two ways: either between remaining and
eliminated degrees of freedom or between different parts of the same system. In
particular, it shows us examples of the area law, when I is sub-extensive.

16. The last lesson is two progressively more powerful forms of the second
law of thermodynamics, which originally was 〈∆S〉 ≥ 0. The first new form,
〈e−∆S〉 = 1, is the analog of a Liouville theorem. The second form relates the
probabilities of forward and backward process: ρ†(−∆S) = ρ(∆S)e−∆S .

6.2 Epilogue

The central idea of this course is that learning about the world means building a
model, which is essentially finding an efficient representation of the data. Opti-
mizing information transmission or encoding may seem like a technical problem,
but it is actually the most important task of science, engineering and survival.
Science works on more and more compact encoding of the strings of data, which
culminates in formulating a law of nature, potentially describing infinity of phe-
nomena. The mathematical tool we learnt here is an ensemble equivalence in the
thermodynamic limit, its analog is the use of typical sequences in communication
theory. The result is two roles of entropy: it defines maximum transmission and
minimum compression.

Another central idea is that entropy is not a property of the physical world,
but is an information we lack about it. And yet the information is physical — it
has an energetic value and a monetary price. Indeed, the difference between work
and heat is that we have information about the former but not the later. That
means that one can turn information into work and one needs to release heat to
erase information. We also have learnt that one not only pays for information but
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can turn information into money as well. The physical nature of information is
manifested in the universal limit on how much of it we can squeeze into a space
restricted by a given area.

Reader surely recognized that no rigorous proofs were given, replaced instead
by plausible hand-waving argument or even a particular example. Those interested
in proofs for Chapter 2 can find them in Dorfman ”An Introduction to Chaos in
Nonequilibrium Statistical Mechanics”. Detailed information theory with proofs
can be found in Cowen & Thomas ”Elements of Information Theory”, whose Chap-
ter 1 gives a concise overview. Nor the examples given are representative of the
ever-widening avalanche of applications; more biological applications can be found
in ”Biophysics” by Bialek, others in original articles and reviews. On quantum
information the comprehensive books are those by Preskill and Nielsen&Chuang.
Numerous references scattered through the text, like (Zipf 1949), give you the most
compact encoding of what is to google to find details.

Mention briefly one important subject left out of this course. Our focus was
largely (though not entirely) on finding a data description that is good on average.
Yet there exists a closely related approach that focuses on finding the shortest
description and ultimate data compression for a given string of data. The Kol-
mogorov complexity is defined as the shortest binary computer program able to
compute the string. It allows us to quantify how much order and randomness is in
a given sequence — truly random sequence cannot be described by an algorithm
shorter than itself, while any order allows for compression. Complexity is (approx-
imately) equal to the entropy if the string is drawn from a random distribution,
but is actually a more general concept, treated in courses on Computer Science.
Another fundamental issue not treated here is the dramatic difference between the
classical and quantum classifications of computational complexity.

Taking a wider view, I invite you to reflect on the history of our attempts to
realize limits of possible, from heat engines through communication channels to
computations. Will the next step be to study the natural limits of thinking and
feeling?

Looking back one may wonder why accepting the natural language of informa-
tion took so much time and was so difficult for physicists and engineers. Generati-
ons of students (myself including) were tortured by ”paradoxes” in the statistical
physics, which disappear when information language is used. I suspect that the
resistance was to a large extent caused by the misplaced desire to keep scientist
out of science. A dogma that science must be something ”objective” and only
related to the things independent of our interest in them obscures the simple fact
that science is a form of human language. True, we expect it to be objectively
independent of personality of this or that scientist as opposite, say, to literature,
where we celebrate the difference between languages (and worlds) of Tolstoy and
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Chekhov. However, science is the language designed by and for humans, so that it
necessarily reflects both the way body and mind operate and the restrictions on our
ability to obtain and process the data. Presumably, omnipresent and omniscient
being would have no need in the statistical information approach described here.
One may also wonder to what extent essential presence of scientist in science may
help us to understand the special status of measurement in quantum mechanics.

As we learnt here, better understanding must lead to a more compact presen-
tation; hopefully, the next version of these lecture notes will be shorter.
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