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Recent ML developments: a deal with the devil
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Interpretability

• Interpretability is an overloaded term in 
machine learning (ML)

• But we can classify it roughly in two classes
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1. Post hoc interpretability (Ribeiro et al., 2016)
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2. Global interpretability:
Converting the statistical model into something interpretable

(aka ”knowledge distillation”)
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(Craven and Shavlik, 1996) (Hinton et al., 2015)



Comparison

• Post hoc interpretability
– May provide only an approximate explanation 

(Netflix lies to you )
– You can’t fix a problem with the original model 

when identified

• Global interpretability
– May lose some performance in the conversion
– Allows corrections to the model when problems 

are discovered
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This is our focus!



Globally interpretable models 
for natural language processing

1. Humans can understand the model
2. Humans can change the model
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Academia vs. industry
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Interpretable 
(rule-based)

Hybrid

Machine
Learning



Why do we care about global 
interpretability?

• Most of today’s meaningful projects are inter-
disciplinary, e.g., ML + medicine

• We can’t expect an expert in another domain 
to understand (and fix!) our statistical 
classifiers

• But we need to iterate quickly… 
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USE CASE: MACHINE READING FOR 
CANCER RESEARCH
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Why cancer?

14$200 billion have been invested in cancer research since (R. Barzilay, NAACL 2016)



Why cancer?
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Cancer Death Rates* Among Women, US, 1930 – 2005 



Why cancer?
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Cancer Death Rates* Among Men, US, 1930 – 2009 



Why the slow progress?
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Why the slow progress?
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90% are never cited!1

1 http://www.smithsonianmag.com/smart-news/half-academic-studies-are-never-read-more-three-people-180950222/?no-ist



“A knotty puzzle may hold a scientist up 
for a century, when it may be that a 
colleague has the solution already and is not 
even aware of the puzzle that it might 
solve.” 

– Isaac Asimov, The Robots of Dawn 
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The problem of “undiscovered public knowledge” 
(Swanson, 1986)



We need machine reading

• If humans can’t process this much 
information, then machines must help!
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Machine reading for biomedical literature
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Reading

Reasoning
Predict, explain, test, curate, etc.

Assembly
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REACH (REading and Assembling Contextual and Holistic mechanisms)
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REACH (REading and Assembling Contextual and Holistic mechanisms)
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REACH (REading and Assembling Contextual and Holistic mechanisms)
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REACH (REading and Assembling Contextual and Holistic mechanisms)
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REACH (REading and Assembling Contextual and Holistic mechanisms)



Type Syntax Surface Total

Entities 0 15 15

Generic entities 0 2 2

Modifications 0 6 6

Mutants 0 9 9

Total entities 0 32 32

Simple events 15 11 26

Binding 30 7 37

Hydrolysis 8 2 10

Translocation 12 0 12

Positive regulation 16 4 20

Negative regulation 14 3 17

Total events 95 27 122

Total 95 59 154

Few grammar rules
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These rules were manually written.
Later I will discuss our work on 

using learn such rules using 
representation learning.



How well does machine reading work 
for a complete reading task?
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Human domain 
experts are 
around here
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But is machine reading actually useful?



Mutual exclusivity intuition
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The Mutex algorithm
(by Emek Demir and colleagues)
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Slide courtesy of: Emek Demir, OHSU

Mutex insight:  If a tumor “wants” to disable a mechanism, it will mutate 
something upstream, but it generally won’t “pay” for two mutations that 
do the same thing.  So mutually exclusive mutations plus a good model 
can tell us which mechanisms the tumor disables.

Y is a “kill 
switch” that 

prevents 
proliferation  

“Door”

“Window”



How Mutex works

• Mutex does a graph search on the signaling network 
to find subgraphs of genes that 
– are altered in mutually exclusive manner, and 
– have a common downstream signaling target.

35

Patient data

Machine reading 
contributes here!



post-translational control
(protein-level)

expression control
(RNA-level)

new discovery

Breast
(BRCA)



Brain
(GBM)



Machine reading suggests novel 
hypotheses that are missed by the 
authors of the individual publications.



LEARNING INTERPRETABLE MODELS
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Motivation for rule learning

• It took us 1 – 2 person months to build the 
grammar of 150+ rules for the biomedical 
domain

• In many cases, one does not have this time
• Scenario 1: But training data exists
• Scenario 2: And training data does not exist 

either…
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Motivation

• It took us 1 – 2 person months to build the 
grammar of 154 rules for the biomedical 
domain

• In many cases, one does not have this time
• Scenario 1: But training data exists (2 papers)
• Scenario 2: And training data does not exist 

either…

41



42



A three-step process

1. Train a statistical classifier
a) Aggressive feature selection using regularization

2. Convert model to rules
a) Convert features to rules
b) “Snap to grid”: throw away most statistics by 

discretizing feature weights

3. Model editing



BioNLP 2009 Shared Task

CD2 signaling induces phosphorylation of CREB in primary lymphocytes.
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Phosphorylation+Reg Classifier #1: 
detect event triggers

Classifier #2: 
detect relations 
between triggers and 
proteins

Protein



Step 1: train statistical classifiers 

• We use logistic regression for both classifiers

• Feature selection through regularization
– L1 regularization: aggressive feature selection; 

slightly lower performance



Machine learning features

Triggers
• Token

– Word, lemma, gazetteer
• Surface

– Token features for a window 
around token of interest

– Bigrams
• Syntax

– Dependency paths up to depth 2
– Token features for token at the end 

of each path
• Bag-of-words and entity count

– For whole sentence
– For window surrounding token of 

interest

Relations
• Path

– Shortest dependency path 
between nodes of interest

– With and without lexicalization
– Path length

• Surface
– Words surrounding and between 

nodes of interest
• Consistency

– Soft constraints on edges between 
trigger and arguments (e.g., only 
regulations have causes)

• N-gram
– Dependency, token, dependency
– Token, dependency, token



Step 2: Convert model features to rules

• Features are just patterns
• We simply rewrote them using Odin 

syntax

“Passive subject of a phosphorylation trigger that is a protein”



Step 2: Convert model features to rules

- type : dependency
label: Phosphorylation
pattern: |

trigger:Phosphorylation
theme:Protein = >nsubjpass



Step 2: Convert model features to rules

• We know have a decision list classifier. But:
• Feature weights are unbounded continuous 

values
– Useful for resolving conflicts
– But nearly impossible to understand/modify

• Rules still need to vote
– We normalize and discretize weights (“votes”) using 

Scott’s rule (used for the generation of bins in 
histograms)



Step 2: Convert model features to rules

+1 vote+2 votes-1 vote

-2 votes



Step 2: Convert model features to rules

• Binding
– PROTEIN recruits PROTEIN

• Localization
– PROTEIN is recruited to the cytoplasm

# vote: +2
- name: Binding_1

label: Binding
type: token
action: countMentions
pattern: |

[lemma=recruit & tag=/^(V|N|J)/]

# vote: +1
- name: Localization_1

label: Localization
type: token
action: countMentions
pattern: |

[lemma=recruit & tag=/^(V|N|J)/]



Step 3: Model editing

• Two linguists were given the task of improving 
the generated rules

• Constraints:
– Only have access to the model. No peeking at the 

training data
– Approximately one hour to work on the task



Expert recommendations

• Generalize syntactic patterns, e.g., participants in 
events may be heads or modifiers of noun 
phrases
– E.g.: “K-Ras” or “the K-Ras protein” 

• Eliminate trigger rules that were not sufficiently 
discriminative

• Make rules robust to common parsing mistakes

• (22 total specific recommendations)



Results on BioNLP 2009
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Results on BioNLP 2009
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Nearly the same performance. 
But with an interpretable model!

This is still a large number of rules.
We can reduce them by > 1 order of 
magnitude using automata theory.



Summary

• Converting statistical models into a 
deterministic decision list classifier does 
impact performance negatively

• But keeping the human in the loop allows us to 
recover almost all the lost performance. And 
we end up with an interpretable model!
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Fine. But how do you do this with 
neural networks that do not have 
explicit features?
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Intuition: jointly training for prediction and 
interpretability!

1. Use neural classifiers instead of the LRs in the 
previous paper 

2. Decode rules from natural language texts 
(reusing ideas from machine translation)

– Source language – original texts
– “Target language” – grammar rule that matches

3. Train them jointly 
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Encoder-decoder neural architectures 
for machine translation
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I       eat    cake     . 

Je mange  du  gateau   .

A neural take on the 
interlingua representation



Our “source” and “target languages”
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(source)

(target)
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Data

• For event classification: BioNLP 2013 (similar 
to the data used in the previous paper)

• For rule decoding: pairs of (sentence, rule) 
extracted by our machine reading system with 
manually written rules
– Some come from the BioNLP dataset and are 

aligned with the gold annotations in BioNLP 2013
– Approximately 15K pairs come from other 

publications (“silver” data)
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Results for event classification
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We extract 3 types of events

• Rule baseline – system with manually written rules
• T1 – supervised neural event classifier
• T1 + Silver – semi-supervised neural event classifier
• T1 + Silver + T2 - semi-supervised neural event 

classifier trained jointly with the rule decoder



Results for event classification
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Semi-supervised learning helps!



Results for event classification
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Jointly training for prediction and 
interpretability helps prediction!



Results for rule decoding
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Rule error analysis
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Green – missed text in the decoded rule
Red – hallucinated text



Summary

• A neural approach that jointly trains for 
prediction and interpretability 

• The joint training improves prediction!
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Motivation

• It took us 1 – 2 person months to build the 
grammar of 154 rules for the biomedical 
domain

• In many cases, one does not have this time
• Scenario 1: But training data exists
• Scenario 2: And training data does not exist 

either…
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Architecture and walkthrough example

Shown for this task. But a 
similar algorithm works for 

event extraction



Traditional rule bootstrapping algorithm 
for entity classification
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Entities Patterns
LOC: San Francisco LOC: city of ___ 
LOC: Los Angeles LOC: mayor of ___

Seeds

Problem: brittle statistics, 
estimated only with respect 

to known information!

city of San Francisco
City of God
city of Tucson

✓
?
?



Learning to read

We want to combine:
• The advantages of representation learning, aka 

“word embeddings”
– Neural network language models handle unsupervised 

data well
• The interpretability of our current approach

– Produce patterns in the end
• Keep the human in the loop, but minimally

– Just a few examples
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Starting point: distributional hypothesis

• Distributional hypothesis:
– By looking at a word’s context, one can infer its 

meaning (Harris, 1954)
– You shall know a word by the company it keeps 

(Firth, 1957)
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Example

• tasty X
• X with butter
• X and coffee
• greasy X
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Example

• tasty X
• X with butter
• X and coffee
• greasy X
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You shall know a word by the company it keeps.
- Firth, 1957

Starting point: word2vec, skip-gram

You shall know the company by the word it keeps.
- Word2vec, skip-gram
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Starting point: word2vec, skip-gram

The city of Tucson is the place to vacation !

89

P(city|Tucson) ++
P(place|Tucson) ++
…
P(dog|Tucson) - -
…

city Tucson

place

dog



Two important changes

• We will learn embeddings for both named 
entities and patterns
– An entity’s context is defined by the patterns that 

match it

• Added supervision in the objective function, 
to incorporate human-provided information
– We have “seed” names in each category
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Context as patterns

91

The city of Tucson is the place to vacation !

P(city of __|Tucson) ++
P(__ is the place|Tucson) ++
…
P(the __ barks|Tucson) - -
…

city of __
Tucson

__ is the place

the __ barks

We can export the patterns 
closest to a category to be 

used in our grammars!

Just n-grams…



Objective function
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Tucson
city of __

__ is the place

1

the __ barks

2

San Francisco
3

Barack Obama
Bernie Sanders

4

1 2 Unsupervised, directly “inherited” from skip-gram

3 4 Light supervision from a few seed examples, iteratively expanded



EmBoot
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Entities
embedding vectors 
for entities and patternsLOC: San Francisco

LOC: Los Angeles
Seeds

SGD on the previous objective function

Promote entities closest to the seeds



Visualization of the training procedure

• On the CoNLL-2003 dataset
– PER = purple
– LOC = blue
– ORG = green
– MISC = red

• Human contribution: seed set with 10 entities in 
each category
– PER: Clinton, Dole, …
– LOC: U.S., Germany, …
– ORG: Reuters, U.N., …
– MISC: Russian, German, …
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MISC

PER

LOC

ORG

PER
Mostly 

performers
Mostly 

politicians
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Results, CoNLL dataset (4 classes)
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Results, OntoNotes (11 classes)

111



Summary

• A lightly-supervised approach that jointly 
learns representations for entities and 
patterns that extract them

• State-of-the-art results for semi-supervised 
learning

• The rules can be edited by domain experts, 
and this leads to further improvements in 
performance (not shown)
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Take-home message

• For large, inter-disciplinary projects we need 
to move beyond “black-box” methods to 
approaches that produce globally 
interpretable models

• We can produce such interpretable models 
using deep learning (best of both worlds?)
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THANK YOU!
QUESTIONS?
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