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• A properly designed guidance algorithm enables vehicles 
to follow specified paths in space or achieve geometric 
objectives using feedback control

• Stability theory, dynamics, and differential geometry are critical 
to understanding guidance

• Realtime computation is often required, and closed form 
solutions can be a preferred option for many missions

• Complexity of dynamics will affect guidance performance

• Related references:
– Greenwood, D.T., Principles of Dynamics, Prentice-Hall, 1987.

– do Carmo, M.P., Differential Geometry of Curves and Surfaces, Prentice-
Hall, 1976.

– do Carmo, M., Riemannian Geometry, Birkhäuser, 1992.

– Bullo, F., and A. Lewis, Geometric Control of Mechanical Systems, 
Springer, New York, 2005.
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Trajectories vs Curves

• In dynamics and control problems, we think of a state trajectory as the time 

evolution of motion resulting from an ordinary differential dynamic equation

Dynamic equation: ሶ𝒙 = 𝒇 𝒙, 𝑡 ; 𝒙 𝑡0 = 𝒙0 ∈ ℝ𝑛,

Integral flow (solution): 𝒙 𝑡 = 𝚽𝒇 𝒙0, 𝑡, 𝑡0

• However, what is equally relevant (and less appreciated) is the role of 

geometry in the guidance (control) problem and how differentiable curves 

play a role in determining how we create trajectory designs

Various levels of dynamic modeling are 

used to simulate a missile’s motion 
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Unit Tangent

• Let’s consider a time-parametrized curve to see how geometry and physics 

play a role in guidance

• Given a vehicle with “inertial” position 𝒓 𝑡 at time 𝑡, the arc length distance 

formula is given by the integral particle speed 𝑣 = ሶ𝒓 =
𝑑𝒓

𝑑𝑡
along the path

𝑠𝒓 𝒓(0), 𝒓(𝑡) ≡ න

0

𝑡

ሶ𝒓 𝜏 𝑑𝜏 = න

0

𝑡

𝑣(𝜏) 𝑑𝜏

and hence, 𝑣 = ሶ𝑠𝒓(𝑡). Assuming the curve 𝒓 𝑡 is regular, we define the unit

tangent vector 𝐓(𝑡) at time 𝑡 as the normalized velocity vector

𝐓 𝑡 = 𝑣−1 ⋅ ሶ𝒓 The unit tangent is the 

missile heading
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Total, Tangential, and Normal Acceleration 

• The total acceleration of the trajectory 𝒓 𝑡 is defined as the vector quantity

𝑑 ሶ𝒓

𝑑𝑡
=

𝑑

𝑑𝑡
𝑣 ⋅ 𝐓 = ሶ𝑣 𝐓 + 𝑣 ሶ𝐓 = 𝒈 + 𝒖

where the tangential acceleration is given by

𝑨𝑇 𝑡 = ሶ𝑣 𝐓

and the normal (or centripetal) acceleration is the component orthogonal to 𝐓

𝑨𝑁 𝑡 = 𝑣 ሶ𝐓 = 𝐈𝐝 − 𝐓 𝐓T
𝑑 ሶ𝒓

𝑑𝑡
• For 𝑨𝑁 𝑡 ≠ 0, we define the unit normal vector as

𝐍 𝑡 = 𝑨𝑁 𝑡 −1𝑨𝑁 𝑡

• The unit binormal vector of a regular curve with 𝑨𝑁 𝑡 ≠ 0 is 

𝐁 𝑡 = 𝐓 𝑡 × 𝐍(𝑡)

𝐈𝐝 = Identity matrix Heading is controlled 

by calculating desired 

normal accelerations 

and converting them to 

acceleration commands 

normal to the vehicle 

body, which are then 

used by the autopilot

Acceleration 

due to gravity

Acceleration control
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Frenet-Serret Frame and the Sphere Bundle

• Clearly 𝐓 𝑡 belongs to the tangent space at 𝒓 𝑡 , or 
𝐓 ∈ 𝑇𝒓ℝ

3. We also have 𝐓 𝑡 ∈ 𝑆𝒓 𝑡 ℝ
3, where

𝑆𝒓ℝ
3 = 𝐘 ∈ 𝑇𝒓ℝ

3| 𝐘, 𝐘 = 1 ⊂ 𝑇𝒓ℝ
3

and 𝑆ℝ3 ≡ 𝒓∈ℝ3ڂ 𝑆𝒓ℝ
3 is the sphere bundle for ℝ3

• The Frenet-Serret frame 𝐓,𝐍, 𝐁 [Greenwood] can be 
mapped into the sphere bundle and its tangent space 
𝑇𝑆ℝ3

– The unit vector 𝐓 𝑡 defines the tangent direction at time 𝑡 (the 
point on the sphere)

– The unit vector 𝐍 𝑡 defines the direction of acceleration of 𝐓 𝑡

– The unit vector 𝐁 𝑡 creates the right-handed system 
𝐓 𝑡 , 𝐍 𝑡 , 𝐁 𝑡

– Explicit computation of the tangent space basis (𝐍 𝑡 , 𝐁 𝑡 ) is not 
necessary in the guidance design process

𝐍 𝑡𝐓 𝑡

𝐁 𝑡

The sphere bundle is the 

natural space for missile 

guidance design
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• Consider the simple dynamic system with fully-controllable 
acceleration

ሷ𝒓 = 𝒈 + 𝒖

• Assuming ሶ𝒓𝛿 is a desired velocity with ሶ𝒓, ሶ𝒓𝛿 , ሷ𝒓𝛿 available for control, 
the Euclidean feedback/feedforward control

𝒖 = −𝒈 − 𝑐 ሶ𝒓 − ሶ𝒓𝛿 + ሷ𝒓𝛿

produces the first-order error dynamics for 𝒆 = ሶ𝒓 − ሶ𝒓𝛿 :

ሶ𝒆 = −𝑐𝒆

• Main Issue and Resolution: Cannot usually control missile thrust, 
but we can control acceleration normal to the unit heading 𝐓 ∈ 𝑆2

indirectly through control of acceleration normal to the vehicle body
7

Linear Feedback/Feedforward Control System Example
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• For simplicity, we equate 𝑆𝒓ℝ
3 with 𝑆2. Assume the normal acceleration 

is determined by the projection of acceleration due to gravity 𝒈 and 

controlled by a vector input 𝒖 ∈ 𝑇𝐓𝑆
2 in the tangent space

𝑨𝑁 𝑡 = 𝑣 ሶ𝐓 = 𝐈𝐝 − 𝐓 𝐓T 𝒈 + 𝒖

and assume the vehicle speed never approaches zero, or 𝑣 ≥ 𝜀 > 0. 

• We want to develop a guidance design that ensures the vehicle unit 

heading 𝐓 converges to a desired unit heading 𝐓𝛿
• Several possible objectives for guidance

– Solve a possibly time-varying boundary value problem (intercept)

– Converge to a desired path (midcourse trajectory tracking)

– Remain in an invariant set (safety, stability)
8

Simple Guidance on the Sphere

The tangent space 𝑇𝐓𝑆
2 is 

the natural space for simple 

guidance design 

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.



Nature and the Mathematics of Guidance Design

• Geometric principles can be used to 

derive simple control commands called 

steering laws

• Predators evolved to take advantage of 

these principles

• A predator needs a regulator, or 

control system, that takes in 

measurements to produce normal 

acceleration and stabilize the 

trajectory relative to a steering law

Peregrine Falcon

Tiger Beetle
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Pursuit Steering Law (Tiger Beetle)

• Let 𝒓 be the predator position and 𝒓𝑇 be the prey position, the line of sight 

(LOS) unit vector from the predator to the prey is

𝐓LOS = vers 𝒓𝑇 − 𝒓 =
𝒓𝑇 − 𝒓

‖𝒓𝑇 − 𝒓‖

• Ideal (Virtual) Interceptor Velocity for Pursuit Steering (𝑣 = ሶ𝒓 ) :

ሶ𝒓𝛿 = 𝑣 𝐓𝛿 = 𝑣 𝐓LOS = 𝑣 vers 𝒓𝑇 − 𝒓

• Ideal Interceptor Acceleration for Pursuit Steering:

ሷ𝒓𝛿 = ሶ𝑣 𝐓𝛿 + 𝑣 ሶ𝐓𝛿 = ሶ𝑣 𝐓LOS + 𝑣 ሶ𝐓LOS
= ሶ𝑣 𝐓LOS +𝝎LOS/𝐼 × 𝑣 𝐓LOS

= ሶ𝑣 𝑣−1 ሶ𝒓𝛿 +𝝎LOS/𝐼 × ሶ𝒓𝛿

where 𝝎LOS/𝐼 is the angular velocity of the LOS relative to inertial (we assume 

that 𝝎LOS/𝐼
T ⋅ 𝐓LOS = 0)

𝐓𝛿 and ሶ𝐓𝛿 are steering 

commands in a pursuit 

guidance design
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• Given an ideal steering law, how does one develop a 

control (regulator) to allow for convergence to the ideal?

– One can use Lyapunov-based stability methods to derive a 

stabilizing control law relative to a desired trajectory  

– Geometric methods can be used to derive coordinate-free control

• Feedback control – a control function of the dynamic 

state and desired command

• Feedforward control – a function of the highest 

derivative of the command that produces the error 

system of differential equations
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Feedback/Feedforward Regulation

Ensuring stability is an important 

part of any control design process

Aleksandr Mikhailovich Lyapunov
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Configuration Error Function Concept [Bullo]

The Configuration or Tracking Error 

Function, 𝜑 𝒒, 𝒓 , is a smooth function of 

reference input 𝒓 and actual configuration 𝒒

• For a fixed r,  locally looks like a potential with 

minimum at the point r

• Fix r (denoted r) and compute the differential 

𝑑𝜑𝒓 𝒒 to create a feedback control restoring 

force

𝒓 𝑡2

𝒓 𝑡1

𝒓 𝑡3
𝜑𝒓(𝑡1) 𝒒
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Vector Error & Transport Concept [Bullo]

A Transport Mapping 𝓣𝒓→𝒒 is a smooth 

mapping that carries a tangent vector from 

the tangent space of 𝒓 to that of 𝒒

ሶ𝒆 = Vector Error

𝒒, ሶ𝒒 − 𝓣𝒓→𝒒 ሶ𝒓

𝒒, ሶ𝒒

𝒒,𝓣𝒓→𝒒 ሶ𝒓

𝒓, ሶ𝒓

𝓣𝒓→𝒒 will be used to transport the desired 

acceleration command for feedforward control
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Geometric Midcourse Design

• Steering Law

– Specifies the ideal direction to move 

the interceptor given a steering 

condition

– Relative 3-D information

– Can be a function of the target, the 

missile speed, predictions, etc.

– Must be differentiable with bounded 

derivative as convergence is proven 

in infinite time (no discontinuities)

• Regulation

– Specifies control design to regulate 

to the ideal direction and orthogonal 

to the heading vector

– Designed on the sphere to obtain 

near global stability

Ideal, or desired, heading

Time-derivative of 

the Ideal heading

Gradient of config error 

function between desired 

and actual heading

Transported ideal 

curvature  

𝐓𝛿

𝒖 = − 𝐈𝐝 − 𝐓 𝐓T 𝒈

+𝑣 𝒯𝐓𝛿→𝐓
ሶ𝐓𝛿 − 𝜕𝜑𝐓𝛿 𝐓

ሶ𝐓𝛿

Gravity compensation
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The Spherical Geometry of the Guidance Problem

𝜑(𝐓, 𝐓𝛿)

Can choose a potential 

function between desired and 

missile tangent unit directions

𝐓𝛿(𝑡)

Desired intercept velocity dir

path defined by steering law

𝐓(𝑡)

Unit mag curve represents 

interceptor velocity direction 

as a function of time

𝒯𝐓𝛿→𝐓
ሶ𝐓𝛿

Transport of curvature

Steering law 

curvature

ሶ𝐓𝛿
Interceptor curvature

ሶ𝐓

Curvature error is a stable first 

order system

ሶ𝒆 = 𝐓 − 𝛾𝐓𝛿→𝐓𝛽
ሶ𝐓𝛿 = −𝜕𝜑𝐓𝛿 𝐓

−𝜕𝜑𝐓𝛿 𝐓

Negative gradient of 

the distance function
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Practical Geometric Guidance Solutions
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Moving LoiterTime-varying Docking Problem

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.



17

BACKUP

This document does not contain technology or technical data controlled under either the U.S. International Traffic in Arms Regulations or the U.S. Export Administration Regulations.



18

Frenet-Serret Frame and Radius of Curvature

• The pair 𝐓,𝐍 , when defined, is a basis for the osculating plane and 

𝐓,𝐍, 𝐁 , when defined, forms a right-handed orthonormal basis called the 

Frenet-Serret Frame 

• Let 𝜔𝐁 = ሶ𝐓, 𝐍 . We have

𝑑𝐓

𝑑𝑡
= 𝜔𝐁𝐍 = 𝜔𝐁𝐁 × 𝐓 .

• When defined, the radius of curvature 𝜌(𝑡) at time 𝑡 is 

𝜔𝐁 𝑡 = 𝜌 𝑡
−1
𝑣 𝑡 .

• The center of curvature vector at time 𝑡 is given by 

𝑪 𝑡 = 𝜌 𝑡 𝐍 𝑡 .

Minimum radius of curvature 

is inversely related to the G-

limit of missile
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Dynamics of the Osculating Plane 

• Differentiating the unit normal vector, we have

𝑑𝐍

𝑑𝑡
=

𝑑

𝑑𝑡
𝐁 × 𝐓 =

𝑑𝐁

𝑑𝑡
× 𝐓 + 𝐁 ×

𝑑𝐓

𝑑𝑡

=
𝑑𝐁

𝑑𝑡
× 𝐓 + 𝜔𝐁𝐁 × 𝐍 =

𝑑𝐁

𝑑𝑡
× 𝐓 − 𝜔𝐁𝐓

• Since we have

𝑑𝐁

𝑑𝑡
=
𝑑𝐓

𝑑𝑡
× 𝐍 + 𝐓 ×

𝑑𝐍

𝑑𝑡
= 𝐓 ×

𝑑𝐍

𝑑𝑡
𝑑𝐁

𝑑𝑡
must be parallel to 𝐍 𝑡 , so we can write 

𝑑𝐁

𝑑𝑡
= −𝜔𝐓𝐍 = 𝜔𝐓𝐓 × 𝐁

where 𝜔𝐓 = −
𝑑𝐁

𝑑𝑡
, 𝐍 𝑡 is the rotation rate of the osculating plane.

𝜔𝐓 is related to the missile 

torsion. If 𝜔𝐓 = 0, the motion 

of the missile lies in a plane
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Dynamics of the Frenet-Serret Frame

• Thus,

𝑑𝐍

𝑑𝑡
= −𝜔𝐓𝐍 × 𝐓 − 𝜔𝐁𝐓

= 𝜔𝐓𝐁 − 𝜔𝐁𝐓

• The dynamics of the Frenet-Serret frame are given by

𝑑𝐓

𝑑𝑡
= 𝜔𝐁𝐁 × 𝐓

𝑑𝐍

𝑑𝑡
= 𝜔𝐓𝐓 × 𝐍 + 𝜔𝐁𝐁 × 𝐍

𝑑𝐁

𝑑𝑡
= 𝜔𝐓𝐓 × 𝐁

• Where the Darboux Angular Velocity is defined by 𝝎 𝑡 = 𝜔𝐓 ⋅ 𝐓 𝑡 + 𝜔𝐁 ⋅ 𝐁(𝑡)

In missile guidance design, 

the speed and time history of 

the trajectory are of primary 

importance (no unit-speed 

normalization required) 
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Configuration Error Definition [Bullo]

• Definition: Let 𝒓 ∈ 𝑀 and 𝒒 ∈ 𝑀 denote respectively the reference and 

controlled configurations. A smooth, symmetric (wrt interchanging of input 

variables) function 𝜑:𝑀 ×𝑀 → ℝ is a configuration error function if for 

each 𝒓 ∈ 𝑀, 𝜑𝒓 𝒒 is proper, bounded from below, and 𝜑 satisfies

1. 𝜑 𝒓, 𝒓 = 0,

2. 𝑑𝜑𝒓 𝒒 |𝒒=𝒓 = 0,

3. Hess 𝜑𝒓 𝒒 |𝒒=𝒓 is positive definite.

This configuration error function will 

serve as a Lyapunov function to 

demonstrate stability
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Transport Mapping Definition [Bullo]

• A transport mapping is a smooth bitensor field 𝓣 on 𝑀 ×𝑀 satisfying

1. 𝓣𝒓→𝒒 ∈ 𝐺𝐿(𝑇𝒓𝑀,𝑇𝒒𝑀), that is, 𝓣𝒓→𝒒 works like a smooth matrix that maps 

vectors from the tangent space of 𝒓 to the tangent space of 𝒒, and

2. 𝓣𝒒→𝒒 = 𝐈𝐝.

where 𝓣𝒓→𝒒 denotes the evaluation of 𝓣 at 𝒑 = 𝒓, 𝒒 .

• Parallel Transport is an example of a transport mapping, but transport is a 

more general concept

The transport mapping will be used to create a vector error 

between tangent vectors at different points on the sphere
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Compatibility Condition

• Configuration Error and Transport Mapping should be consistent with each 

other to ensure stability of a closed loop control

• Cannot expect stability if one chooses two inconsistent methods of 

configuration and vector error

• The compatibility condition is equivalent to the condition that

ሶ𝜑 𝒒, 𝒓 = 𝑑𝜑𝒓 𝒒 ሶ𝒒 − T𝒓→𝒒 ሶ𝒓 (Lemma 11.16 [Bullo]) 

• Euclidean Example: Using 𝜑 𝒒, 𝒓 =
1

2
𝑘 𝒒 − 𝒓 ⊤ 𝒒 − 𝒓 , we have

ሶ𝜑 𝒒, 𝒓 = 𝑘 𝒒 − 𝒓 ⊤ ሶ𝒒 − ሶ𝒓

= 𝑘 𝒒 − 𝒓 , ሶ𝒒 − 𝐈𝐝 ( ሶ𝒓)

= 𝜕𝜑𝒓 𝒒 , ሶ𝒒 − T𝒓→𝒒 ሶ𝒓 = 𝑑𝜑𝒓 𝒒 ሶ𝒒 − T𝒓→𝒒 ሶ𝒓

Differential holding 𝒓 fixed
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𝑺𝟐 Configuration Error/Transport Mapping for Guidance 

Physical Pendulum Prototype

• Configuration Error Function:

𝜑𝐴 𝐓, 𝐓𝛿 = 𝑘𝑝 1 − 𝐓, 𝐓𝛿

• Gradient wrt 𝐓 holding 𝐓𝛿 fixed:

𝜕𝜑𝐓𝛿
𝐴 𝐓 = −𝑘𝑝 𝐈𝐝 − 𝐓𝐓⊤ 𝐓𝛿 = 𝑘𝑝 𝐓 × 2𝐓𝛿

= −𝑘𝑝 sin arccos 𝐓, 𝐓𝛿 vers 𝐓 × 𝐓𝛿 × 𝐓

• Transport Mapping:

𝒯𝐓𝛿→𝐓
𝐴 = 𝐓,𝐓𝛿 𝐈𝐝 + 𝐓𝛿 × 𝐓 ×

Skew-symmetry operator 

Direction of max increase is 

pointing away from the vector 𝐓𝛿
and in the tangent plane of 𝐓

𝐓𝛿

𝐓

vers 𝐓 × 𝐓𝛿

𝜕𝜑𝐓𝛿
𝐴 𝐓
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Thank you.
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