

The Differential and Riemannian Geometry of Guidance

Rob Fuentes, Ph.D.
Engineering Fellow
Emerging Technology Lead, Guidance, Navigation and Control (GNC)
Sept 16, 2022

Applied Math in Guidance and Control

- A properly designed guidance algorithm enables vehicles to follow specified paths in space or achieve geometric objectives using feedback control
- Stability theory, dynamics, and differential geometry are critical to understanding guidance
- Realtime computation is often required, and closed form solutions can be a preferred option for many missions
- Complexity of dynamics will affect guidance performance
- Related references:

SM-3 ${ }^{\text {® }}$

- Greenwood, D.T., Principles of Dynamics, Prentice-Hall, 1987.
- do Carmo, M.P., Differential Geometry of Curves and Surfaces, PrenticeHall, 1976.
- do Carmo, M., Riemannian Geometry, Birkhäuser, 1992.
- Bullo, F., and A. Lewis, Geometric Control of Mechanical Systems, Springer, New York, 2005.

Trajectories vs Curves

- In dynamics and control problems, we think of a state trajectory as the time evolution of motion resulting from an ordinary differential dynamic equation

$$
\begin{aligned}
& \text { Dynamic equation: } \dot{\boldsymbol{x}}=\boldsymbol{f}(\boldsymbol{x}, t) ; \boldsymbol{x}\left(t_{0}\right)=\boldsymbol{x}_{0} \in \mathbb{R}^{n} \\
& \quad \text { Integral flow (solution): } \boldsymbol{x}(t)=\boldsymbol{\Phi}_{\boldsymbol{f}}\left(\boldsymbol{x}_{0}, t, t_{0}\right)
\end{aligned}
$$

- However, what is equally relevant (and less appreciated) is the role of geometry in the guidance (control) problem and how differentiable curves play a role in determining how we create trajectory designs

Unit Tangent

- Let's consider a time-parametrized curve to see how geometry and physics play a role in guidance
- Given a vehicle with "inertial" position $\boldsymbol{r}(t)$ at time t, the arc length distance formula is given by the integral particle speed $v=\|\dot{\boldsymbol{r}}\|=\left\|\frac{d r}{d t}\right\|$ along the path

$$
s_{\boldsymbol{r}}(\boldsymbol{r}(0), \boldsymbol{r}(t)) \equiv \int_{0}^{t}\|\dot{\boldsymbol{r}}(\tau)\| d \tau=\int_{0}^{t} v(\tau) d \tau
$$

and hence, $v=\dot{s}_{r}(t)$. Assuming the curve $\boldsymbol{r}(t)$ is regular, we define the unit tangent vector $\mathbf{T}(t)$ at time t as the normalized velocity vector

$$
\mathbf{T}(t)=v^{-1} \cdot \dot{\boldsymbol{r}}
$$

Total, Tangential, and Normal Acceleration

- The total acceleration of the trajectory $\boldsymbol{r}(t)$ is defined as the vector quantity

$$
\frac{d \dot{\boldsymbol{r}}}{d t}=\frac{d}{d t}(v \cdot \mathbf{T})=\dot{v} \mathbf{T}+v \dot{\mathbf{T}}=\boldsymbol{g}+\boldsymbol{u}_{\lambda} \text { Acceleration control }
$$

where the tangential acceleration is given by

Acceleration
due to gravity
and the normal (or centripetal) acceleration is the component orthogonal to \mathbf{T}

$$
\text { Id = Identity matrix } \quad \boldsymbol{A}_{N}(t)=v \dot{\mathbf{T}}=\left(\mathbf{I d}-\mathbf{T} \mathbf{T}^{\mathrm{T}}\right) \frac{d \dot{\boldsymbol{r}}}{d t}
$$

- For $\boldsymbol{A}_{N}(t) \neq 0$, we define the unit normal vector as

$$
\mathbf{N}(t)=\left\|\boldsymbol{A}_{N}(t)\right\|^{-1} \boldsymbol{A}_{N}(t)
$$

- The unit binormal vector of a regular curve with $\boldsymbol{A}_{N}(t) \neq 0$ is

$$
\mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)
$$

Heading is controlled by calculating desired normal accelerations and converting them to acceleration commands normal to the vehicle body, which are then used by the autopilot

Frenet-Serret Frame and the Sphere Bundle

- Clearly $\mathbf{T}(t)$ belongs to the tangent space at $\boldsymbol{r}(t)$, or $\mathbf{T} \in T_{\boldsymbol{r}} \mathbb{R}^{3}$. We also have $\mathbf{T}(t) \in S_{\boldsymbol{r}(t)} \mathbb{R}^{3}$, where

$$
S_{r} \mathbb{R}^{3}=\left\{\mathbf{Y} \in T_{r} \mathbb{R}^{3} \mid\langle\mathbf{Y}, \mathbf{Y}\rangle=1\right\} \subset T_{r} \mathbb{R}^{3}
$$

and $S \mathbb{R}^{3} \equiv \cup_{r \in \mathbb{R}^{3}} S_{r} \mathbb{R}^{3}$ is the sphere bundle for \mathbb{R}^{3}

- The Frenet-Serret frame (T, N, B) [Greenwood] can be mapped into the sphere bundle and its tangent space $T S \mathbb{R}^{3}$
- The unit vector $\mathbf{T}(t)$ defines the tangent direction at time t (the point on the sphere)
- The unit vector $\mathbf{N}(t)$ defines the direction of acceleration of $\mathbf{T}(t)$
- The unit vector $\mathbf{B}(t)$ creates the right-handed system $(\mathbf{T}(t), \mathbf{N}(t), \mathbf{B}(t))$
- Explicit computation of the tangent space basis ($\mathbf{N}(t), \mathbf{B}(t))$ is not necessary in the guidance design process

The sphere bundle is the natural space for missile guidance design

Linear Feedback/Feedforward Control System Example

- Consider the simple dynamic system with fully-controllable acceleration

$$
\ddot{\boldsymbol{r}}=\boldsymbol{g}+\boldsymbol{u}
$$

- Assuming $\dot{\boldsymbol{r}}_{\delta}$ is a desired velocity with $\dot{\boldsymbol{r}}, \dot{\boldsymbol{r}}_{\delta}, \ddot{\boldsymbol{r}}_{\delta}$ available for control, the Euclidean feedback/feedforward control

$$
\boldsymbol{u}=-\boldsymbol{g}-c\left(\dot{\boldsymbol{r}}-\dot{\boldsymbol{r}}_{\delta}\right)+\ddot{\boldsymbol{r}}_{\delta}
$$

produces the first-order error dynamics for $\boldsymbol{e}=\dot{\boldsymbol{r}}-\dot{\boldsymbol{r}}_{\delta}$:

$$
\dot{\boldsymbol{e}}=-c \boldsymbol{e}
$$

- Main Issue and Resolution: Cannot usually control missile thrust, but we can control acceleration normal to the unit heading $\mathbf{T} \in S^{2}$ indirectly through control of acceleration normal to the vehicle body

Simple Guidance on the Sphere

- For simplicity, we equate $S_{r} \mathbb{R}^{3}$ with S^{2}. Assume the normal acceleration is determined by the projection of acceleration due to gravity g and controlled by a vector input $\boldsymbol{u} \in T_{\mathrm{T}} S^{2}$ in the tangent space

$$
\boldsymbol{A}_{N}(t)=v \dot{\mathbf{T}}=\left(\mathbf{I d}-\mathbf{T} \mathbf{T}^{\mathrm{T}}\right) \boldsymbol{g}+\boldsymbol{u}
$$

The tangent space $T_{\mathrm{T}} S^{2}$ is the natural space for simple guidance design
and assume the vehicle speed never approaches zero, or $v \geq \varepsilon>0$.

- We want to develop a guidance design that ensures the vehicle unit heading \mathbf{T} converges to a desired unit heading \mathbf{T}_{δ}
- Several possible objectives for guidance
- Solve a possibly time-varying boundary value problem (intercept)
- Converge to a desired path (midcourse trajectory tracking)
- Remain in an invariant set (safety, stability)

Nature and the Mathematics of Guidance Design

- Geometric principles can be used to derive simple control commands called steering laws
- Predators evolved to take advantage of these principles

Peregrine Falcon

Tiger Beetle

- A predator needs a regulator, or control system, that takes in measurements to produce normal acceleration and stabilize the trajectory relative to a steering law

Pursuit Steering Law (Tiger Beetle)

- Let \boldsymbol{r} be the predator position and \boldsymbol{r}_{T} be the prey position, the line of sight (LOS) unit vector from the predator to the prey is

$$
\mathbf{T}_{\mathrm{LOS}}=\operatorname{vers}\left(\boldsymbol{r}_{T}-\boldsymbol{r}\right)=\frac{\boldsymbol{r}_{T}-\boldsymbol{r}}{\left\|\boldsymbol{r}_{T}-\boldsymbol{r}\right\|}
$$

- Ideal (Virtual) Interceptor Velocity for Pursuit Steering $(v=\|\dot{\boldsymbol{r}}\|)$:

$$
\dot{\boldsymbol{r}}_{\delta}=v{\widehat{\mathbf{T}_{\delta}}}=v \mathbf{T}_{\mathrm{LOS}}=v \operatorname{vers}\left(\boldsymbol{r}_{T}-\boldsymbol{r}\right)
$$

- Ideal Interceptor Acceleration for Pursuit Steering:

$$
\begin{aligned}
\ddot{\boldsymbol{r}}_{\delta}=\dot{v} \mathbf{T}_{\delta} & +v \grave{\mathbf{T}}_{\delta}=\dot{v} \mathbf{T}_{\mathrm{LOS}}+v \dot{\mathbf{T}}_{\mathrm{LOS}} \\
& =\dot{v} \mathbf{T}_{\mathrm{LOS}}+\boldsymbol{\omega}_{\mathrm{LOS} / I} \times\left(v \mathbf{T}_{\mathrm{LOS}}\right) \\
& =\dot{v} v^{-1} \dot{\boldsymbol{r}}_{\delta}+\boldsymbol{\omega}_{\mathrm{LOS} / I} \times \dot{\boldsymbol{r}}_{\delta}
\end{aligned}
$$

\mathbf{T}_{δ} and $\dot{\mathbf{T}}_{\delta}$ are steering commands in a pursuit guidance design
where $\omega_{\text {LOS/I }}$ is the angular velocity of the LOS relative to inertial (we assume that $\boldsymbol{\omega}_{\mathrm{LOS} / I}^{\mathrm{T}} \cdot \mathbf{T}_{\mathrm{LOS}}=0$)

Feedback/Feedforward Regulation

- Given an ideal steering law, how does one develop a control (regulator) to allow for convergence to the ideal?
- One can use Lyapunov-based stability methods to derive a stabilizing control law relative to a desired trajectory
- Geometric methods can be used to derive coordinate-free control
- Feedback control - a control function of the dynamic state and desired command
- Feedforward control - a function of the highest derivative of the command that produces the error system of differential equations

Aleksandr Mikhailovich Lyapunov

Configuration Error Function Concept [Bullo]

Function, $\varphi(\boldsymbol{q}, \boldsymbol{r})$, is a smooth function of reference input \boldsymbol{r} and actual configuration \boldsymbol{q}

- For a fixed r, φ locally looks like a potential with minimum at the point r
- Fix \boldsymbol{r} (denoted φ_{r}) and compute the differential $d \varphi_{r}(\boldsymbol{q})$ to create a feedback control restoring
 force

Vector Error \& Transport Concept [Bullo]

Geometric Midcourse Design

- Steering Law

- Specifies the ideal direction to move the interceptor given a steering condition
- Relative 3-D information
- Can be a function of the target, the missile speed, predictions, etc.
- Must be differentiable with bounded derivative as convergence is proven in infinite time (no discontinuities)
$\mathbf{T}_{\delta} \quad$ Ideal, or desired, heading

$$
\dot{\mathbf{T}}_{\delta} \quad \begin{aligned}
& \text { Time-derivative of } \\
& \text { the Ideal heading }
\end{aligned}
$$

- Regulation

- Specifies control design to regulate to the ideal direction and orthogonal to the heading vector
- Designed on the sphere to obtain near global stability

Gravity compensation \downarrow	
$\begin{aligned} \boldsymbol{u}= & -(\mathbf{I d} \\ & +v\left(\mathcal{T}_{\mathbf{I}}\right. \end{aligned}$	$\begin{aligned} & \left.\mathbf{T} \mathbf{T}^{\mathrm{T}}\right) \boldsymbol{g} \\ & \left.\dot{\mathbf{T}}_{\delta}-\partial \varphi_{\mathbf{T}_{\delta}}(\mathbf{T})\right) \end{aligned}$
sported ide vature	Gradient of config error function between desired and actual heading

The Spherical Geometry of the Guidance Problem

Can choose a potential function between desired and missile tangent unit directions

Negative gradient of Unit mag curve represents the distance function interceptor velocity direction

$$
-\partial \varphi_{\mathbf{T}_{\delta}}(\mathbf{T}) \quad \text { as a function of time }
$$

$$
-\mathbf{T}(t)
$$

Transport of curvature
Desired intercept velocity dir path defined by steering law

Practical Geometric Guidance Solutions

Time-varying Docking Problem

Moving Loiter

BACKUP

Frenet-Serret Frame and Radius of Curvature

- The pair (\mathbf{T}, \mathbf{N}), when defined, is a basis for the osculating plane and ($\mathbf{T}, \mathbf{N}, \mathbf{B}$), when defined, forms a right-handed orthonormal basis called the Frenet-Serret Frame
- Let $\omega_{\mathbf{B}}=\langle\mathbf{T}, \mathbf{N}\rangle$. We have

$$
\frac{d \mathbf{T}}{d t}=\omega_{\mathbf{B}} \mathbf{N}=\left(\omega_{\mathbf{B}} \mathbf{B}\right) \times \mathbf{T} .
$$

- When defined, the radius of curvature $\rho(t)$ at time t is

$$
\omega_{\mathbf{B}}(t)=(\rho(t))^{-1} v(t) .
$$

Minimum radius of curvature is inversely related to the Glimit of missile

- The center of curvature vector at time t is given by

$$
\boldsymbol{C}(t)=\rho(t) \mathbf{N}(t) .
$$

Dynamics of the Osculating Plane

- Differentiating the unit normal vector, we have

$$
\begin{aligned}
& \frac{d \mathbf{N}}{d t}=\frac{d}{d t}(\mathbf{B} \times \mathbf{T})=\frac{d \mathbf{B}}{d t} \times \mathbf{T}+\mathbf{B} \times \frac{d \mathbf{T}}{d t} \\
= & \frac{d \mathbf{B}}{d t} \times \mathbf{T}+\left(\omega_{\mathbf{B}} \mathbf{B}\right) \times \mathbf{N}=\frac{d \mathbf{B}}{d t} \times \mathbf{T}-\omega_{\mathbf{B}} \mathbf{T}
\end{aligned}
$$

- Since we have

$$
\frac{d \mathbf{B}}{d t}=\frac{d \mathbf{T}}{d t} \times \mathbf{N}+\mathbf{T} \times \frac{d \mathbf{N}}{d t}=\mathbf{T} \times \frac{d \mathbf{N}}{d t}
$$

$\frac{d \mathbf{B}}{d t}$ must be parallel to $\mathbf{N}(t)$, so we can write

$$
\frac{d \mathbf{B}}{d t}=-\omega_{\mathbf{T}} \mathbf{N}=\left(\omega_{\mathbf{T}} \mathbf{T}\right) \times \mathbf{B}
$$

ω_{T} is related to the missile torsion. If $\omega_{\mathbf{T}}=0$, the motion of the missile lies in a plane
where $\omega_{\mathbf{T}}=-\left\langle\frac{d \mathbf{B}}{d t}, \mathbf{N}(t)\right\rangle$ is the rotation rate of the osculating plane.

Dynamics of the Frenet-Serret Frame

- Thus,

$$
\begin{aligned}
\frac{d \mathbf{N}}{d t} & =-\omega_{\mathbf{T}} \mathbf{N} \times \mathbf{T}-\omega_{\mathbf{B}} \mathbf{T} \\
& =\omega_{\mathbf{T}} \mathbf{B}-\omega_{\mathbf{B}} \mathbf{T}
\end{aligned}
$$

- The dynamics of the Frenet-Serret frame are given by

$$
\begin{gathered}
\frac{d \mathbf{T}}{d t}=\left(\omega_{\mathbf{B}} \mathbf{B}\right) \times \mathbf{T} \\
\frac{d \mathbf{N}}{d t}=\left(\omega_{\mathbf{T}} \mathbf{T}\right) \times \mathbf{N}+\left(\omega_{\mathbf{B}} \mathbf{B}\right) \times \mathbf{N} \\
\frac{d \mathbf{B}}{d t}=\left(\omega_{\mathbf{T}} \mathbf{T}\right) \times \mathbf{B}
\end{gathered}
$$

In missile guidance design, the speed and time history of the trajectory are of primary importance (no unit-speed normalization required)

- Where the Darboux Angular Velocity is defined by $\boldsymbol{\omega}(t)=\omega_{\mathbf{T}} \cdot \mathbf{T}(t)+\omega_{\mathbf{B}} \cdot \mathbf{B}(t)$

Configuration Error Definition [Bullo]

- Definition: Let $\boldsymbol{r} \in M$ and $\boldsymbol{q} \in M$ denote respectively the reference and controlled configurations. A smooth, symmetric (wrt interchanging of input variables) function $\varphi: M \times M \rightarrow \mathbb{R}$ is a configuration error function if for each $\boldsymbol{r} \in M, \varphi_{r}(\boldsymbol{q})$ is proper, bounded from below, and φ satisfies

1. $\varphi(\boldsymbol{r}, \boldsymbol{r})=0$,
2. $\left.d \varphi_{r}(\boldsymbol{q})\right|_{q=r}=0$,
3. Hess $\left.\varphi_{r}(\boldsymbol{q})\right|_{q=r}$ is positive definite.
```
This configuration error function will serve as a Lyapunov function to demonstrate stability
```


Transport Mapping Definition [Bullo]

- A transport mapping is a smooth bitensor field $\boldsymbol{\mathcal { T }}$ on $M \times M$ satisfying

1. $\boldsymbol{J}_{r \rightarrow \boldsymbol{q}} \in G L\left(T_{r} M, T_{\boldsymbol{q}} M\right)$, that is, $\boldsymbol{J}_{r \rightarrow \boldsymbol{q}}$ works like a smooth matrix that maps vectors from the tangent space of \boldsymbol{r} to the tangent space of \boldsymbol{q}, and
2. $\boldsymbol{J}_{\boldsymbol{q} \rightarrow \boldsymbol{q}}$ IId.
where $\boldsymbol{J}_{\boldsymbol{r} \rightarrow \boldsymbol{q}}$ denotes the evaluation of $\boldsymbol{\mathcal { T }}$ at $\boldsymbol{p}=(\boldsymbol{r}, \boldsymbol{q})$.

- Parallel Transport is an example of a transport mapping, but transport is a more general concept

Compatibility Condition

- Configuration Error and Transport Mapping should be consistent with each other to ensure stability of a closed loop control
- Cannot expect stability if one chooses two inconsistent methods of configuration and vector error
- The compatibility condition is equivalent to the condition that

$$
\dot{\varphi}(\boldsymbol{q}, \boldsymbol{r})=d \varphi_{r}(\boldsymbol{q})\left(\dot{\boldsymbol{q}}-\mathcal{T}_{r \rightarrow \boldsymbol{q}} \dot{\boldsymbol{r}}\right)(\text { Lemma } 11.16 \text { [Bullo] })
$$

Differential holding r fixed

- Euclidean Example: Using $\varphi(\boldsymbol{q}, \boldsymbol{r})=\frac{1}{2} k(\boldsymbol{q}-\boldsymbol{r})^{\top}(\boldsymbol{q}-\boldsymbol{r})$, we have

$$
\begin{gathered}
\dot{\varphi}(\boldsymbol{q}, \boldsymbol{r})=k(\boldsymbol{q}-\boldsymbol{r})^{\top}(\dot{\boldsymbol{q}}-\dot{\boldsymbol{r}}) \\
=\langle k(\boldsymbol{q}-\boldsymbol{r}), \dot{\boldsymbol{q}}-\operatorname{Id}(\dot{\boldsymbol{r}})\rangle \\
=\left\langle\partial \varphi_{\boldsymbol{r}}(\boldsymbol{q}), \dot{\boldsymbol{q}}-\mathcal{T}_{\boldsymbol{r} \rightarrow \boldsymbol{q}} \dot{\boldsymbol{r}}\right\rangle=d \varphi_{\boldsymbol{r}}(\boldsymbol{q})\left(\dot{\boldsymbol{q}}-\mathcal{T}_{\boldsymbol{r} \rightarrow \boldsymbol{q}} \dot{\boldsymbol{r}}\right)
\end{gathered}
$$

\boldsymbol{S}^{2} Configuration Error/Transport Mapping for Guidance

Physical Pendulum Prototype

- Configuration Error Function:

> Direction of max increase is pointing away from the vector \mathbf{T}_{δ} and in the tangent plane of \mathbf{T}

$$
\varphi^{A}\left(\mathbf{T}, \mathbf{T}_{\delta}\right)=k_{p}\left(1-\left\langle\mathbf{T}, \mathbf{T}_{\delta}\right\rangle\right)
$$

- Gradient wrt \mathbf{T} holding \mathbf{T}_{δ} fixed:

$$
\begin{gathered}
\partial \varphi_{\mathbf{T}_{\delta}}^{A}(\mathbf{T})=-k_{p}\left(\mathbf{I d}-\mathbf{T T}^{\top}\right) \mathbf{T}_{\delta}=k_{p}\left([\mathbf{T}]^{\times}\right)^{2} \mathbf{T}_{\delta} \\
=-k_{p} \sin \left(\arccos \left\langle\mathbf{T}, \mathbf{T}_{\delta}\right\rangle\right)\left(\operatorname{vers}\left(\mathbf{T} \times \mathbf{T}_{\delta}\right) \times \mathbf{T}\right)
\end{gathered}
$$

- Transport Mapping:

$$
\mathcal{T}_{\mathbf{T}_{\delta} \rightarrow \mathbf{T}}^{A}=\left\langle\mathbf{T}, \mathbf{T}_{\delta}\right\rangle \mathbf{I d}+\left[\mathbf{T}_{\delta} \times \mathbf{T}\right]^{\times}
$$

Thank you.

