Analysis

1.Euclidean space. Distance, angle, symmetries (rotation, reflection).

 

2.Metric spaces. Examples (R^n, l^p, (C,L^p)). Limits (sequences, functions).

 

3.Point set topology, open & closed sets. Completeness.

 

4.Vector spaces. Examples. Norms -- Holder & Minkowski inequalities, Convexity.

 

5.Compactness and Arzela-Ascoli theorem.

 

6.Contraction mapping. Lipschitz constant.

 

7.Bonus: Duality, weak topologies.