RONS: Reduced-order nonlinear solutions for PDEs with conserved quantities
When
Reduced-order models of time-dependent partial differential equations (PDEs) where the solution is assumed as a linear combination of prescribed modes are rooted in a well-developed theory. However, more general models where the reduced solutions depend nonlinearly on time-dependent variables have thus far been derived in an ad hoc manner. I introduce Reduced-order Nonlinear Solutions (RONS): a unified framework for deriving reduced-order models that depend nonlinearly on a set of time-dependent variables. The set of all possible reduced-order solutions are viewed as a manifold immersed in the function space of the PDE. The variables are evolved such that the instantaneous discrepancy between reduced dynamics and the full PDE dynamics is minimized. This results in a set of explicit ordinary differential equations on the tangent bundle of the manifold. In the special case of linear parameter dependence, our reduced equations coincide with the standard Galerkin projection. Furthermore, any number of conserved quantities of the PDE can readily be enforced in our framework. Since RONS does not assume an underlying variational formulation for the PDE, it is applicable to a broad class of problems.
Place: Zoom https://arizona.zoom.us/j/86997964863 Password: "Locute"