Quantitative Biology Colloquium

Multiscale/multiphysics modeling of ocular physiology: the eye as a window on the body

When

noon, Feb. 19, 2021

The eye is the only place in the human body where vascular and hemodynamic features can be observed and measured easily and non-invasively down to the capillary level. Numerous clinical studies have shown correlations between alterations in ocular blood flow and ocular diseases (e.g. glaucoma, age-related macular degeneration, diabetic retinopathy), neurodegenerative diseases (e.g. Alzheimer’s disease, Parkinson’s disease) and other systemic diseases (e.g. hypertension, diabetes). Thus, deciphering the mechanisms governing ocular blood flow could be the key to the use of eye examinations as a non-invasive approach to the diagnosis and continuous monitoring for many patients.

However, many factors influence ocular hemodynamics, including arterial blood pressure, intraocular pressure, cerebrospinal fluid pressure and blood flow regulation, and it is extremely challenging to single out their individual contributions during clinical and animal studies. In the recent years, we have been developing mathematical models and computational methods to aid the interpretation of clinical data and provide new insights in ocular physiology in health and disease. In this talk, we will review how these mathematical models have helped elucidate the mechanisms governing the interaction between ocular biomechanics, hemodynamics, solute transport and delivery in health and disease. We will also present a web-based interface that allows the user to run and utilize these models independently, without the need of advanced software expertise.

Place:   Zoom:  https://asu.zoom.us/j/85049043960